Introduction to the stack Σ

Avi Zeff

Today's goal is to define Drinfeld's stack Σ , state (and perhaps even prove) some properties about it, and say something about why we should care. Let's start with the last part: Σ is a special case of the prismatization construction $X \mapsto X^{\triangle}$ applied to the terminal object $\operatorname{Spf} \mathbb{Z}_p$ of *p*-adic formal schemes, i.e. $\Sigma = (\operatorname{Spf} \mathbb{Z}_p)^{\triangle}$. We'll see next time that our definition of Σ (due to Drinfeld [2]) agrees with Bhatt-Lurie's definition in [1] of WCart, where they explain deep connections to prisms and prismatic cohomology: roughly speaking, suitable sheaves on X^{\triangle} correspond to sheaves on the prismatic site of X, so that the prismatic cohomology of X can be understood by looking at X^{\triangle} . As classically construed, the prismatic cohomology of a point $\operatorname{Spf} \mathbb{Z}_p$ should not be very exciting, but once we allow more general sheaves it's analogous to studying the étale cohomology of a point, which should carry Galois information. If nothing else, the structure map $X \to \operatorname{Spf} \mathbb{Z}_p$ induces a map $X^{\triangle} \to \Sigma$, and so the first thing to do is to understand Σ .

First, we'd like to define it. To do so we need to talk briefly about Witt vector schemes and modules.

1. Witt vector modules and Σ

Let W denote the ring scheme of p-typical Witt vectors over Spec \mathbb{Z} ; explicitly, this can be written as Spec $\mathbb{Z}\{x\} = \operatorname{Spec} \mathbb{Z}[x_0, x_1, x_2, \ldots]$, the spectrum of the free δ -ring on one generator, with $\delta(x_n) = x_{n+1}$. (Often, we'll specialize to the case over Spf \mathbb{Z}_p , so we could think of this as Spec $\mathbb{Z}_p\{x\}$ without change.)

We want to look at a modification: let Z be the locally closed subscheme of W cut out by $p = x_0 = 0$ and $x_1 \neq 0$, and let W_{prim} be the formal completion of W along Z. Thus an S-point of W_{prim} is an S-point of W such that the image of S_{red} lands in Z. Equivalently, by the description above we can think of a map $S = \text{Spec } R \to W$ as a sequence of elements $x_n \in R$, and a map to W_{prim} is a sequence such that x_0 is nilpotent and x_1 is invertible. Thus we can write $W_{\text{prim}} = \text{Spec } A$ where A is the (p, x_0) -adic completion of $\mathbb{Z}_p[x_0, x_1, x_2, \ldots][x_1^{-1}]$.

The Witt vectors have a Frobenius endomorphism $F: W \to W$, and one can check that it takes W_{prim} to W_{prim} . In particular we get a Cartesian diagram

$$\begin{array}{ccc} W_{\text{prim}} & \xrightarrow{F} & W_{\text{prim}} \\ & & \downarrow \\ & & \downarrow \\ W & \xrightarrow{F} & W \end{array}$$

with both Frobenii representable in schemes and faithfully flat.

If W^{\times} is the group of units of W (and so a group scheme), there is an action $W^{\times} \times W_{\text{prim}} \rightarrow W_{\text{prim}}$ given by $(\lambda, x) \mapsto \lambda^{-1} x$ (this is better than the action by multiplication for technical reasons, but they're mostly equivalent). We can then define

$$\Sigma = W_{\text{prim}}/W^{\times}$$
.

Thus as a functor Σ is the (fpqc, or by a nontrivial lemma equivalently Zariski) sheafification of $S \mapsto W_{\text{prim}}(S)/W(S)^{\times}$.

To describe the S-points of Σ more explicitly, we need to introduce W_S -modules. For a test scheme S (over Spf \mathbb{Z}_p), we define $W_S = W \times S$. This is a ring scheme over S (i.e. the fibers of the projection to S are ring schemes, namely W); by a W_S -module we mean a commutative affine group scheme over S together with an action of W_S , and we say that a W_S -module is invertible if it is locally isomorphic to W_S (so it is essentially the same thing as a W_S^{\times} -torsor). Thus an S-point of W/W^{\times} is an invertible W_S -module M together with a map of W_S -modules $\xi : M \to W_S$. To get S-points of Σ , we replace W by W_{prim} , which translates to enforcing a "primitiveness" condition on ξ : each fiber of ξ should have reduced part in the kernel of ξ_1 but not in the kernel of ξ_2 , where ξ_n is the composition of ξ with the projection to $W_n \times S$.

The morphism $F: W_{\text{prim}} \to W_{\text{prim}}$ descends to an algebraic and faithfully flat morphism $F: \Sigma \to \Sigma$. On S-points with this description, we can view F as sending (M, ξ) to (M', ξ') defined by tensoring the map $\xi: M \to W_S$ along the map $F \times \text{id}: W_S \to W_S$.

The projection $W \to W_1 = \mathbb{A}^1$ induces, after completion, a map $W_{\text{prim}} \to \mathbb{A}^1$ to the formal affine line, which is algebraic and flat. It follows that there is an algebraic flat map $\Sigma \to \mathbb{A}^1/\mathbb{G}_m$. One can view this map on S-points as sending (M, ξ) to (\mathcal{L}, v) , where \mathcal{L} is a line bundle on S and $v : \mathcal{L} \to \mathcal{O}_S$ is given by tensoring the map $\xi : M \to W_S$ along $W_S \to \mathbb{G}_a \times S$, which gives an S-point of $\mathbb{A}^1/\mathbb{G}_m$.

One can do everything above replacing W everywhere with W_n ; this leads to the stacks $\Sigma_n = (W_n)_{\text{prim}}/W_n^{\times}$. Then $\Sigma_1 = \hat{\mathbb{A}}^1/\mathbb{G}_m$, and $\Sigma = \varprojlim_n \Sigma_n$. The map $\Sigma \to \hat{\mathbb{A}}^1/\mathbb{G}_m$ from above agrees with the projection $\Sigma \to \Sigma_1$.

2. Points and divisors

We're interested in test schemes S which are locally p-nilpotent, so that they can lie over $\operatorname{Spf} \mathbb{Z}_p$. The simplest case is when S is a perfect \mathbb{F}_p -scheme.

Proposition. If S is a perfect \mathbb{F}_p -scheme, $\Sigma(S)$ is a single point.

Proof. By definition, Σ is the sheafification of Spec $R \mapsto W_{\text{prim}}(R)/W(R)^{\times}$, so if we can show that the latter is a point for all perfect \mathbb{F}_p -algebras R the result follows. Since R is perfect, it is reduced, and so the primitiveness condition is just saying that the 0th ghost component vanishes and the 1st is invertible, i.e. $W_{\text{prim}}(R) = \{Vy | y \in W(R)^{\times}\}$ where Vis the Verschiebung. Since R is perfect, $F : W(R)^{\times} \to W(R)^{\times}$ is an isomorphism and in particular $V(y) = V(1)F^{-1}(y)$, so the action of $W(R)^{\times}$ is transitive as expected and the quotient is a single point.

One can also ask about morphisms from other *p*-adic formal schemes. There are two particularly natural morphisms $\operatorname{Spf} \mathbb{Z}_p \to \Sigma$ which are worth discussing more. Unlike in $W(\mathbb{F}_p) = \mathbb{Z}_p$, the points *p* and *V*(1) in $W(\mathbb{Z}_p)$ are distinct; each has image 0 under the projection to $W_1(\mathbb{Z}_p)/p = \mathbb{F}_p$ and invertible image under the first ghost map and so define primitive elements, i.e. maps $\operatorname{Spf} \mathbb{Z}_p \to W_{\text{prim}}$; composing with the projection gives maps $p, V(1) : \operatorname{Spf} \mathbb{Z}_p \to \Sigma$. The Frobenius $F : \Sigma \to \Sigma$ sends V(1) to *p*, since F(V(1)) = p uniformly in the Witt vectors; in fact, it turns out that for any map $\operatorname{Spf} \mathbb{Z}_p \to \Sigma$, composition with Frobenius sends it to the special point $p : \operatorname{Spf} \mathbb{Z}_p \to \Sigma$. (We'll come back to this property.) Bhatt and Lurie call this point p the de Rham point of Σ : pulling back along it gives the comparison theorem between de Rham cohomology and absolute prismatic cohomology.

We now turn to studying certain special divisors on Σ . The most important one is the Hodge–Tate divisor Δ_0 , which can be defined as the preimage of $\{0\}/\mathbb{G}_m$ under the map $\Sigma \to \hat{\mathbb{A}}^1/\mathbb{G}_m$. (We've skipped the discussion of effective divisors on stacks, but this is one.) Since the underlying reduced scheme of $\hat{\mathbb{A}}^1$ is just the zero point and the reduced component of Σ lies in the special fiber, note that $\Sigma_{red} = \Delta_0 \otimes \mathbb{F}_p$.

We can describe the line bundle $\mathcal{O}_{\Sigma}(-\Delta_0)$ explicitly: for each S, if (M,ξ) is an S-point of Σ then M/V(M') is a line bundle on S fitting into the exact sequence

$$0 \to M/V(M') \to \mathcal{O}_S \to \mathcal{O}_{S \times_{\Sigma} \Delta_0} \to 0$$

Here $M' = M \otimes_{W_S} W_S^{(1)}$ and $W_S^{(1)}$ is W_S viewed as a W_S -module via F rather than the identity. Collecting the varying S, this gives a line bundle L on Σ , which fits into a short exact sequence

$$0 o L o \mathcal{O}_{\Sigma} o \mathcal{O}_{\Sigma imes_{\Sigma} \Delta_0} = \mathcal{O}_{\Delta_0} o 0$$

and so $L = \mathcal{O}_{\Sigma}(-\Delta_0)$.

We can understand Δ_0 very explicitly, this time using V(1) instead of p:

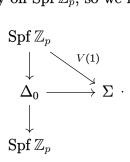
Proposition. The morphism $V(1) : \operatorname{Spf} \mathbb{Z}_p \to \Sigma$ has image in Δ_0 , and induces an isomorphism $\operatorname{Spf} \mathbb{Z}_p / \mathbb{G}_m^{\sharp} \xrightarrow{\sim} \Delta_0$.

Here $\mathbb{G}_{\mathbf{m}}^{\sharp}$ is the associated multiplicative group to the divided power additive group $\mathbb{G}_{\mathbf{a}}^{\sharp} = \operatorname{Spec} \mathbb{Z}_p[x_0, x_1, x_2, \ldots]/(x_{n+1} - x_n^p/p).$

Proposition. There is a commutative diagram

$$egin{array}{cccc} \Delta_0 & & & \Sigma \ & & & & \downarrow_F \ & & & \downarrow_F \ \operatorname{Spf} \mathbb{Z}_p & \stackrel{p}{\longrightarrow} \Sigma \end{array}$$

Proof. By the previous proposition, $V(1) : \operatorname{Spf} \mathbb{Z}_p \to \Sigma$ factors through Δ_0 , and the projection $\operatorname{Spf} \mathbb{Z}_p \to \Delta_0$ factors the identity on $\operatorname{Spf} \mathbb{Z}_p$, so we have a commutative diagram



Since F(V(1)) = p, we can fill in the rest of the diagram.

Since $F : \Sigma \to \Sigma$ is flat, one can also take the preimage of Δ_0 to get divisors $\Delta_n = (F^n)^{-1}(\Delta_0) \subset \Sigma$. Together with the special fiber $\Sigma \otimes \mathbb{F}_p$, these actually turn out to freely generate all effective divisors on Σ . They also have the following relationships:

Proposition. (i) The intersection of any such divisors is in characteristic p, and for m < n we have $\Delta_m \cap \Delta_n = \Delta_m \otimes \mathbb{F}_p$.

- (ii) After taking the special fiber, $\Delta_n \otimes \mathbb{F}_p = p^n \cdot (\Delta_0 \otimes \mathbb{F}_p)$.
- (iii) $\Sigma \otimes \mathbb{F}_p = \bigcup_{n \geq 0} \Delta_n \otimes \mathbb{F}_p$.
- (iv) For any morphism $f: S \to \Sigma$ from a quasi-compact scheme S, for all n sufficiently large we have $f^{-1}(\Delta_n) = S \otimes \mathbb{F}_p$.

Thus in a certain sense $\Delta_n \to \Sigma \otimes \mathbb{F}_p$ as $n \to \infty$.

3. The contracting property of Frobenius

We want to come back to the claim that F sends all \mathbb{Z}_p -points of Σ to the de Rham point p. This turns out to be because F is *contracting*: let's first say what this means.

Let \mathcal{C} be any category and $F : \mathcal{C} \to \mathcal{C}$ a functor. We write \mathcal{C}^F for the category of pairs (c, α) where c is an object of \mathcal{C} and $\alpha : c \xrightarrow{\sim} F(c)$ is an isomorphism; this is called the category of fixed points of F. There is a canonical faithful functor $\mathcal{C}^F \to \mathcal{C}$ sending $(c, \alpha) \mapsto c$, but it is not in general fully faithful.

On the other hand, one can also study the localization

$$\mathcal{C}[F^{-1}] = \varinjlim \left(\mathcal{C} \xrightarrow{F} \mathcal{C} \xrightarrow{F} \mathcal{C} \xrightarrow{F} \cdots \right).$$

We say that F is contracting if $C[F^{-1}]$ is a point, i.e. the trivial category with one object and one morphism.

The above two notions are closely related:

Proposition. If $F : C \to C$ is contracting, then C^F is a point.

Proof. First, we show that \mathcal{C}^F is nonempty. Since $\mathcal{C}[F^{-1}]$ is a point, it in particular has an object and so \mathcal{C} is nonempty; let c be an object. Then c and F(c) have the same image in $\mathcal{C}[F^{-1}]$, so there is some n such that $F^n(c) \simeq F^n(F(c)) = F^{n+1}(c) = F(F^n(c))$, so $F^n(c)$ is in the essential image of the functor $\mathcal{C}^F \to \mathcal{C}$: there is some isomorphism $F^n(c) \simeq F(F^n(c))$.

Next, let c' be any object together with an isomorphism $\alpha : c' \xrightarrow{\sim} F(c')$. Since c' and $F^n(c)$ necessarily agree in $\mathcal{C}[F^{-1}]$, there is some m such that $F^m(c') \simeq F^m(F^n(c))$; since F is an isomorphism on both c' and $F^n(c)$, in fact it follows that $c' \simeq F^n(c)$. Therefore there is only one isomorphism class in \mathcal{C}^F . It remains to show only that there is only one morphism.

Let c, c' be in the essential image of \mathcal{C}^F in \mathcal{C} . Then F gives a map

$$f: \operatorname{Hom}_{\mathcal{C}}(c, c') \to \operatorname{Hom}_{\mathcal{C}}(F(c), F(c')) \simeq \operatorname{Hom}_{\mathcal{C}}(c, c').$$

We can view $\operatorname{Hom}_{\mathcal{C}}(c,c')$ as a discrete category with f giving an endofunctor, and then $\operatorname{Hom}_{\mathcal{C}}(c,c')[f^{-1}]$ is a point because $\mathcal{C}[F^{-1}]$ is, so f is contracting; on the other hand by the above this implies that there is only one object, and so $\operatorname{Hom}_{\mathcal{C}}(c,c')$ is a point as desired. \Box

Now, for each *p*-nilpotent scheme S, we get a category $\Sigma(S)$ and a functor $F(S) : \Sigma(S) \to \Sigma(S)$.

Proposition. If S is quasi-compact, F(S) is contracting.

Let Σ^F denote the stack sending $S \mapsto \Sigma(S)^F$. By the above two propositions, it follows that Σ^F is a point:

Corollary. We have $\Sigma^F = \operatorname{Spf} \mathbb{Z}_p$, and the natural morphism $\Sigma^F = \operatorname{Spf} \mathbb{Z}_p \to \Sigma$ is given by the de Rham point p.

Proof. The first part follows from the above, and the second part follows from the first part together with the fact that p is fixed by F.

In particular, we recover the statement that F sends every $\operatorname{Spf} \mathbb{Z}_p$ -point to p.

4. GLOBAL SECTIONS

In fact, we can say more about p: its image is dense in the following sense.

Proposition. If $Y \subset \Sigma$ is a closed substack such that $p : \operatorname{Spf} \mathbb{Z}_p \to \Sigma$ factors through Y, then $Y = \Sigma$.

(In particular, p is not a monomorphism.)

Corollary. The canonical homomorphism $\mathbb{Z}_p \to H^0(\Sigma, \mathcal{O}_{\Sigma})$ is an isomorphism.

Proof. Let $\varphi : H^0(\Sigma, \mathcal{O}_{\Sigma}) \to \mathbb{Z}_p$ denote the pullback along $p : \operatorname{Spf} \mathbb{Z}_p \to \Sigma$. Then $\mathbb{Z}_p \to H^0(\Sigma, \mathcal{O}_{\Sigma}) \xrightarrow{\varphi} \mathbb{Z}_p$ is the identity on \mathbb{Z}_p , so the canonical homomorphism is an injection and φ is a surjection. On the other hand, ker φ consists of functions on Σ which vanish on the pullback along p, which would have to be supported on the complement of the image of p; by the density result above this is impossible, so ker $\varphi = 0$ and therefore both maps $\mathbb{Z}_p \to H^0(\Sigma, \mathcal{O}_{\Sigma}) \to \mathbb{Z}_p$ are isomorphisms. \Box

5. Line bundles

Recall that we constructed (and described) a line bundle $\mathcal{O}_{\Sigma}(-\Delta_0)$, the kernel of the map $\mathcal{O}_{\Sigma} \to \mathcal{O}_{\Delta_0}$. This gives an element of Pic Σ and further of Pic' Σ , which classifies line bundles on Σ together with a trivialization at p: we can interpret the map p as a $W_{\mathrm{Spf}\mathbb{Z}_p}$ -module M together with a map $\xi : M \to W_{\mathrm{Spf}\mathbb{Z}_p}$, which (as this is just a point) is given explicitly by $M = W_{\mathrm{Spf}\mathbb{Z}_p}$ and ξ is multiplication by p. Therefore pulling back $\mathcal{O}_{\Sigma}(-\Delta_0)$ automatically gives it a trivialization.

The morphism F induces maps $F^* : \operatorname{Pic} \Sigma \to \operatorname{Pic} \Sigma$ and $F^* : \operatorname{Pic}' \Sigma \to \operatorname{Pic}' \Sigma$. One can check that in particular $1 - F^* : \operatorname{Pic}' \Sigma \to \operatorname{Pic}' \Sigma$ is invertible. We then define $\mathcal{O}_{\Sigma}\{1\} = (1 - F^*)^{-1}(\mathcal{O}_{\Sigma}(-\Delta_0))$. This is the first Breuil-Kisin twist; we can define $\mathcal{O}_{\Sigma}\{n\} = \mathcal{O}_{\Sigma}\{1\}^{\otimes n}$. These are supposed to be analogous to Tate twists, and form the most basic example of F-crystals on Σ (and thus prismatic F-crystals on $\operatorname{Spf} \mathbb{Z}_p$): for $n \leq 0$ we get canonical morphisms $F^*\mathcal{O}_{\Sigma}\{n\} \to \mathcal{O}_{\Sigma}\{n\}$.

References

- [1] Bhargav Bhatt and Jacob Lurie. Absolute prismatic cohomology. arXiv preprint arXiv:2201.06120, 2022.
- [2] Vladimir Drinfeld. Prismatization. arXiv preprint arXiv:2005.04746, 2020.