Introduction to Σ'

Avi Zeff

Recall: $\Sigma(S)$ is the groupoid of pairs (M, ξ) for M an invertible W_S -module and $\xi : M \to W_S$ a primitive morphism. (In light of our comparison to WCart from last time, we could think of (M, ξ) as giving a "generalized ideal" making W_S a "generalized prism.") Here an invertible module is one which is locally isomorphic to W_S (in either the Zariski or fpqc topologies).

We want to define a larger stack, and so we take a generalization: instead of requiring M to be invertible, we require it only to be *admissible*. This means that there is a short exact sequence

$$\mathbf{0} \to M_{\mathbf{0}} \to M \to M' \to \mathbf{0}$$

of W_S -modules where M_0 is locally isomorphic to $W_S^{(F)}$ and M' is locally isomorphic to $W_S^{(1)}$ as W_S -modules, where $W_S^{(1)}$ is W_S viewed as a W_S -module via Frobenius F rather than via the identity, and $W_S^{(F)}$ is the kernel of the resulting map $F: W_S \to W_S^{(1)}$ of W_S -modules. If M is locally isomorphic to W_S , then it is admissible via the short exact sequence

$$0 \to W_S^{(F)} \to W_S \to W_S^{(1)} \to 0$$

of W_S -modules, so this is indeed a generalization.

If $S = \operatorname{Spec} k$ for k a perfect field of characteristic p, then $\Sigma'(S)$ has exactly three isomorphism classes, represented by

$$(W_S, p), \qquad (W_S^{(F)} \oplus W_S^{(1)}, \mathbf{0} + V), \qquad (W_S^{(F)} \oplus W_S^{(1)}, \mathbf{1} + V)$$

Since invertible modules are admissible, we get a natural fully faithful functor $j_+(S)$: $\Sigma(S) \to \Sigma'(S)$, functorial in S, and so an embedding $j_+: \Sigma \hookrightarrow \Sigma'$. We call its image Σ_+ . It is an open substack affine over Σ' .

As for Σ , there is a natural Frobenius F' on Σ' given by twisting (M, ξ) by Frobenius. However, now its image actually lies in Σ , since Frobenius kills $W_S^{(F)}$, and so we get a morphism $F' : \Sigma' \to \Sigma$. One can check that $F' \circ j$ recovers the original Frobenius F on Σ . It turns out that F' is algebraic, and composing with the map $\Sigma \to \hat{\mathbb{A}}^1/\mathbb{G}_m$ we get that Σ' is algebraic over $\hat{\mathbb{A}}^1/\mathbb{G}_m$.

We can define a second map $j_{-}: \Sigma \to \Sigma'$, by

$$M \mapsto \tilde{M} = M^{(1)} \times_{W_{C}^{(1)}} W_{S}$$

via the maps $\xi : M \to W_S$ and $F : W_S \to W_S^{(1)}$, and $\xi \mapsto \tilde{\xi} : \tilde{M} \to W_S$ given by the projection onto the second factor. Again j_- is an embedding, with image Σ_- an open substack of Σ' ; restricting $F' : \Sigma' \to \Sigma$ to Σ_- gives an isomorphism $F' : \Sigma_- \xrightarrow{\sim} \Sigma$. Thus we have

$$F' \circ j_+ = F, \qquad F' \circ j_- = \operatorname{id}_{\Sigma}.$$

One can work out that Σ_+ and Σ_- are disjoint in Σ' .

One can also interpret $j_{-}: \Sigma \to \Sigma'$ as right adjoint to $F': \Sigma' \to \Sigma$.

Recall on Σ , we defined a line bundle $\mathscr{L}_{\Sigma} = \mathcal{O}_{\Sigma}(-\Delta_0)$ and used it to define $\mathcal{O}_{\Sigma}\{1\} = (1 - F^*)^{-1}\mathscr{L}_{\Sigma}$. We want to do something similar for Σ' . In an analogous way (omitted since we haven't introduced Δ'_0 yet), we can define a line bundle $\mathscr{L}_{\Sigma'}$ on Σ' which again comes with a map $v_-: \mathscr{L}_{\Sigma'} \to \mathcal{O}_{\Sigma'}$, and the locus on which v_- is an isomorphism is precisely Σ_- . Thus $j_-^*\mathscr{L}_{\Sigma'} \xrightarrow{\sim} \mathcal{O}_{\Sigma_-} \simeq \mathcal{O}_{\Sigma}$, while $j_+^*\mathscr{L}_{\Sigma'} = \mathscr{L}_{\Sigma}$.

To form $\mathcal{O}_{\Sigma}\{1\}$, it was important to fix a trivialization of \mathscr{L}_{Σ} via pullback along p: Spf $\mathbb{Z}_p \to \Sigma$. Via j_{\pm} this induces trivializations along Spf $\mathbb{Z}_p \xrightarrow{p} \Sigma \xrightarrow{j_{\pm}} \Sigma'$. We define

$$\mathcal{O}_{\Sigma'}\{1\} = \mathscr{L}_{\Sigma'} \otimes F'^* \mathcal{O}_{\Sigma}\{1\}.$$

Proposition. We have isomorphisms

$$j_+^*\mathcal{O}_{\Sigma'}\{1\}\simeq \mathcal{O}_{\Sigma}\{1\}, \qquad j_-^*\mathcal{O}_{\Sigma'}\{1\}\simeq \mathcal{O}_{\Sigma}\{1\}.$$

Proof. By the identities above (and the fact that pullback is symmetric monoidal), we have

$$j_{+}^{*}\mathcal{O}_{\Sigma'} = j_{+}^{*}\mathscr{L}_{\Sigma'} \otimes j_{+}^{*}F'^{*}\mathcal{O}_{\Sigma}\{1\} = \mathscr{L}_{\Sigma} \otimes (F' \circ j_{+})^{*}\mathcal{O}_{\Sigma}\{1\}$$

and

$$j_{-}^{*}\mathcal{O}_{\Sigma'} = j_{-}^{*}\mathscr{L}_{\Sigma'} \otimes j_{-}^{*}F'^{*}\mathcal{O}_{\Sigma}\{1\} = \mathcal{O}_{\Sigma} \otimes (F' \circ j_{-})^{*}\mathcal{O}_{\Sigma}\{1\}.$$

Since $F' \circ j_+ = F$ and $F' \circ j_- = \mathrm{id}_{\Sigma}$, this is

$$j_+^*\mathcal{O}_{\Sigma'} = \mathscr{L}_{\Sigma} \otimes F^*\mathcal{O}_{\Sigma}\{1\}, \qquad j_-^*\mathcal{O}_{\Sigma'} = \mathcal{O}_{\Sigma}\{1\}.$$

To finish, we write $\mathcal{O}_{\Sigma}\{1\} = (1-F^*)^{-1}\mathscr{L}_{\Sigma}$, so $F^*\mathcal{O}_{\Sigma}\{1\} = F^*(1-F^*)^{-1}\mathscr{L}_{\Sigma} = ((1-F^*)^{-1}-1)\mathscr{L}_{\Sigma}$, and so

$$j_{+}^{*}\mathcal{O}_{\Sigma'} = (1 + (1 - F^{*})^{-1} - 1)\mathscr{L}_{\Sigma} = (1 - F^{*})^{-1}\mathscr{L}_{\Sigma} = \mathcal{O}_{\Sigma}\{1\}.$$

Thus this is the "right" definition in that it extends $\mathcal{O}_{\Sigma}\{1\}$ from both copies of Σ in Σ' to the whole thing. One can then define $\mathcal{O}_{\Sigma'}\{n\}$ by tensoring as usual.

Like for Σ , we can define a Hodge–Tate divisor $\Delta'_0 \subset \Sigma'$, as the zero locus of $v_- : \mathscr{L}_{\Sigma'} \to \mathcal{O}_{\Sigma'}$. This must be disjoint from Σ_- ; its intersection with Σ_+ is exactly $j_+(\Delta_0)$. Again, we can give an explicit description of Δ'_0 . Recall that on Σ , we found $\Delta_0 \simeq \operatorname{Spf} \mathbb{Z}_p/\mathbb{G}_m^{\sharp}$. In this setting, it turns out that $\Delta'_0 \simeq (\mathbb{A}^1 \widehat{\otimes} \mathbb{Z}_p)^{\mathrm{dR}}/\mathbb{G}_m$.

For any *p*-nilpotent scheme S, we can describe $\Delta'_0(S)$ explicitly: it is the category of line bundles \mathscr{L} on S together with an extension of $W_S^{(1)}$ by $\mathscr{L} \otimes W_S^{(F)}$. Analogous to the diagram of last time, we have a commutative diagram

$$egin{array}{ccc} \Delta'_0 & \longrightarrow \Sigma' \ & & & \downarrow_{F'} \ \operatorname{Spf} \mathbb{Z}_p & \stackrel{p}{\longrightarrow} \Sigma \end{array}$$

Indeed, if we restrict the upper right corner to Σ_+ , we obtain the analogous diagram with Δ_0 . As a consequence, we obtain that the restrictions of $\mathcal{O}_{\Sigma'}\{1\}$ and $\mathscr{L}_{\Sigma'}$ to Δ'_0 agree: the pullback of $\mathcal{O}_{\Sigma}\{1\}$ along p is canonically trivial, so $\mathcal{O}_{\Sigma'}\{1\} = \mathscr{L}_{\Sigma'} \otimes F'^* \mathcal{O}_{\Sigma}\{1\}$ restricted to Δ'_0 is just the restriction of $\mathscr{L}_{\Sigma'}$.

References

[1] Vladimir Drinfeld. Prismatization. arXiv preprint arXiv:2005.04746, 2020.