Norm residue isomorphism theorem: Rost motives
Avi Zeff

1. INTRODUCTION

Fix a € KM(k) and suppose we have a Rost variety X = X, for a. Our goal today is to
associate to X a Rost motive M = (X, e) for some idempotent e : X — X with coefficients
in R = Z. (We'll always mean Z by R unless stated otherwise.)

Let’s first recall what a Rost motive is. Let X be the simplicial scheme with objects X"
and face maps given by projections, and as last time write € for R, (X) and eM for e ® M
for any motive M. We have a structure map y : M — € and a twisted dual y” : . — M,
where d = dim X = /"1 — 1. We say that M is a Rost motive associated to X if

(i) M = (X, e) is a symmetric Chow motive,
(ii) there is a map A : Ry, (X) — M factoring the projection Ry (X) — R, and
(iii) there is a motive D fitting into the two distinguished triangles

DRL > MY e Y5 M D,

where b=d/({ —1) =1+ L+ -+ ("2
The outline of this lecture is as follows: first, given a class z € H***1*(X, R) = Hom (R (X), R(b)[2b+
1]), we will construct a candidate and prove that it satisfies (ii) and (iii). To verify (i), we
need to impose a condition on z, namely that it be “suitable”; we’ll then show that under
this assumption (i) holds, and (using skipped material from section 3) show that such a z
exists to conclude that we can use this construction to get a Rost variety for any X.

2. A CANDIDATE

Fix z € H**(X, R), i.e. a morphism 2 : ¢ — R(b)[2b + 1] = L*[1] in DM®X(k, R). By a

result from last time, for any motive N we have Hom(e, N) = Hom(e, e N) and so z lifts to a
morphism € — €lL’[1], which we will also denote by z. Up to isomorphism, there is a unique
A with a map y : A — € fitting into the triangle

Ll B AL e S dlb[1] — .
From last time, we have A = AT(b)[20] = AT ® L?, and setting y? = y' ® LY taking X-duals
of this triangle and tensoring with IL” gives the triangle

zT[1}®]Lb\

D Tt b
dL.by—>AT®ILbz®L\6 el — .

Lemma 1. There is a map A\ : R (X) — A factoring the structure map Ry (X) — € as

Ru(X) D AL e

Proof. Applying Hom(R;,(X), —) to the first triangle above gives the exact sequence
Hom (R (X), A) & Hom(Ry(X),€) = Hom(R(X),LY[1]) =0

by the vanishing theorem ([2, 19.3]). Therefore the map sending A\ : Ry (X) — A to its
composition with y : A — € is surjective, and in particular there exists some \; whose
composition with y is the structure map Ry, (X) — € as claimed. O
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By composing with the structure map € = R, (X) — R, we see that A satisfies (ii), and
so we might expect that A is our candidate to be a Rost motive, and indeed if £ = 2 it is: in
this case b = d and so the above two triangles show that D = e satisfies (iii). Showing (i) is
harder, but we’ll be able to prove it eventually.

In general though this doesn’t work: for ¢ > 2 we no longer have b = d, and so the
second triangle here does not correspond to the second triangle required for condition (iii).
To rectify this, in general we define M = Sym‘~!(A) and D = Sym‘~2(A), which recovers A
and € in the case ¢ = 2.

It is not immediate that M satisfies either (ii) or (iii). To prove both, we work in
the following more general setting. Let z € H?***14(X, R) for arbitrary p,q > 0, and set
T = R(q)[2p], so that z is the same thing as a morphism ¢ — T'[1] or equivalently ¢ — €T'[1].
As above, let A be the motive fitting into the triangle

T S5 AL e eT[l] — .

We have a slice filtration on A, which we can read off this triangle: so(A) = e and s,(A) = €T
(This is the filtration s>,(M) = RHom(L™ M) ® L™ corresponding to the subcategory
generated by eR(q) with ¢ > n.)

There is a transfer map tr : Sym’(A4) — Sym’ ' (A4) ® A sending

a1®~--®aiHZ(m@---aj@---ai)@aj
J

and a corestriction map cores : S“H(A)® A — SY(A) sending (a; ®- - -®a;_1)@a to the image
of 4, ® - -®a;_1®ain Sym'(A) = A®/S;. Let u = (id ®y)otr : Sym‘(A4) — Sym" ' (A)®A —
Sym“'(A) ® € 2 Sym' *(A) and v = coreso(id®z) : Sym" ' (A) ® T — Sym" '(4A) ® A —
Sym‘(A). We have Sym'T = T" by [2, 15.7], and so Sym‘(eT) = eS*(T) = €T*. Therefore
Sym’ z is a map €I" — Sym® A.

Proposition 2. There exist unique morphisms r : Sym' '(A) — €T'[1] and s : ¢ —

Sym‘ ' (A) ® T[1] such that we have distinguished triangles

eIt 2™ Gumi(A) % Symi T (A) 5 eT71] —
and '
Sym'™ (4) ® T 2 Sym'(4) 22 € 5 Sym'™ (4) T[],

and under the slice filtration on Sym‘(A), restricted to s<q¢(Symi A) u is an isomorphism
onto Sym’_l(A); similarly v identifies s-o(Sym*’ A) with Sym* ' (A)®T; and Sym’ y identifies
€ with so(Sym" A).

Observe that taking p = ¢ = b and i = ¢ — 1 gives distinguished triangles as in (iii) for
M = Sym‘ A and D = Sym* 2 4, since then T' = L? and 7% = L~V = L9,

Proof. We have s,(A%") =37 . _ 5,(A)®---®s,,(A). We can take the symmetric
part uniformly to get a decomposition of s,(Sym’A) into terms of the form s,,(A), which
are 0 unless m = 0 or m = ¢ as above. Thus s,(A) consists of tensors of up to i copies of
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things living in degree g as well as potentially sum in degree 0, and therefore s, (A) is trivial
unless n = ¢j for some j < i.

Since €T = eR(q)[2p] is concentrated in slice degree ¢i, Sym’z injectively maps it into
s4i(Sym’ A); its cokernel in this part is the image of €T* in s,,(Sym’' A) = 0 because we
cannot have ¢i = ¢qj for j < i — 1. Therefore Sym’z identifies €7" with sqi(Symi A) as
claimed.

Expanding the definition of w, we see that its part in degree gj, i.e. s4(u), is just
multiplication by ¢ — j, which is an isomorphism for j < 7. The existence and uniqueness of
r then follows from the lemma below. Essentially the same argument applies to the second
case. O

Lemma 3. Suppose we have a sequence A = B L C with A in slice degree > n and C
in slice degree < n. If s;(a) is an isomorphism for i > n and s;(b) is an isomorphism for
i <, then there is a unique morphism ¢ : C — A[l] such that A = B Hob All] is a
distinguished triangle, which identifies A and C' with s>, B and s<, B respectively.

Proof. Choose any distinguished triangle A = B — C’ — A[1] extending a. Since ba = 0
(since it is a map from A in degree > n to C in degree < n), b factors through some
¢ : C" — C. For i < n, taking s; of everything s;(b) is an isomorphism and so s;(¢) must
be as well; for i > n, s;(a) is an isomorphism and so s;(B — C”) must be the zero map, as
is s;(B — C) since C is in degree < n, and so s;(¢) is trivially an isomorphism. Therefore
si(¢) is always an isomorphism and so ¢ must be as well. Thus precomposing C' — A[l]
with ¢! gives the desired triangle.

To get uniqueness, suppose that (a, b, ¢') is a second triangle on (A, B, C'). Then there is
an endomorphism f : C' — C' giving a morphism of triangles (id4,idg, f). Since s, (b) is an
isomorphism, s, (f) must be the identity.

Finally, the last assertion follows since s>,C' = 0 and S0 s>p(a) : s, A = A — s<, B is
an isomorphism, and similarly for s, (b) : s, B — s-,C = C. O

Next, we want to show that M also satisfies (ii).

Proposition 4. There exists a map X : Ry (X) — M = Sym* ' (A) factoring Ry(X) — ¢
mZ—l
as Ry (X) 2 Sym/1(A) 2%,
Proof. Recall that Ry, (X) — e factors through Ay : R, (X) — A by Lemma 1. Taking this
as the base case, we’ll show that for every i < ¢ we have a map \; : Ry (X) — Sym'(A)
factoring Ry (X) — €.
Applying Hom(R,(X), —) to the first triangle of Proposition 2 gives the exact sequence

Hom(R(X),Sym’(A4)) % Hom(R(X),Sym' *(A)) & Hom(R(X), eT*[1]) = 0

by the vanishing theorem again, so in particular \;_; : Ry (X) — Sym‘ '(A) factors as
Ai_1 = uwo \; for some \; : Ri:(X) — Sym’(A). By induction we conclude that Ry (X) — €
factors as yowuo---owuo Ny since uo---owuoM_1; = A and we know from Lemma 1 that
y o A is the desired structure map. But yu’~! = Sym*~!y by the definition of u, and so the
result follows. O
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3. SUITABLE COHOMOLOGY CLASSES

It remains to show that our candidate M = Sym‘~'(A) satisfies (i), i.e. is a symmetric Chow
motive, where A is constructed as above from a cohomology class z € H* (X, Z). In
fact this is not true for arbitrary z; but we will impose a condition on it that makes it true.

We need the motivic cohomology operations Q; : H**(X,Z,) — H*T2¢~Y=Y(X 7/0).
These are defined by Qo = 3 and Q1 = P*Q;—Q;P" (for £ > 2), where P’ are Voevodsky’s
reduced power operations and £ is the Bockstein map.

Definition. We say that = € H**'(X,Z ) is suitable if its mod ¢ reduction Z satisfies
Qn-1(2) #0 and Q;(2) =0 for every 0 < i <n — 1.

If 2 = BQ; - - Qn—2(6), where {3 is the integral Bockstein, then z is suitable if and only if
Qn-1(2) # 0, since Z = Qo - - - Qn_20 and so Q;(2z) = 0 since the @); anticommute and square
to 0.

From the part of section 3 that we skipped, since X splits a # 0, assuming BL(n — 1)
there is a unique nonzero lift § € H™ Y(X,Z/() = H*(X,Z/l(n — 1)) of a € KM(k) =
H™(X,Z/(n)), and pp = BQy - - - Qu_s6 € H*T1¥(X, 7./0) satisfies Q,,_1 (1) # 0 and therefore
is suitable.

We now need the notion of the fundamental class 7 of X. Recall that by motivic duality
Ry (X) ~ Ry (X)* ® L4, and so

Hom(L%, R, (X)) = Hom(LY, Ry, (X)* ® LY) = Hom(R(X), R) = H*(X, R).
The cohomology H*(X, R) is a ring and in particular has an identity 1 € H°(X, R), which

thus corresponds to a canonical map 7 : L — Ry, (X) and thus another map . — Ry, (X),
also denoted 7.

Proposition 5. Let z € H*Y(X Z/0) be such that Q,_1(z) # 0 and Qi(z) = 0 for
0<1<n—1. Then the composition

eL? D Ry (X) 2 5C1(A)
is nonzero, where R =7/¢.

This follows from more magic in section 13 and our factorization of the structure map.

~Y

Since symmetric powers commute with duals and A = A" @ L’, we have Sym‘(A) =
Sym’(A)" @ LY. Therefore we can define the dual map

AP Symf1(A) = SymL(A) @ L4 X9 R (X)) @ Le 2 Ry (X).

Theorem 6. Suppose that = € H**T10(X, Zgy) is suitable. Then the composition Ao\P is an
isomorphism on M = Sym‘~*(A), and there is a constant ¢ € Ly such that Aot = ¢ Sym‘™z
and the following diagram commutes:

M )\OAD M

lsymifl y lsyméfl y .
C
€ €

—
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In particular A? splits A, so that M = Sym‘(A) is a direct summand of Ry, (X) and so
a Chow motive.

Proof. By Proposition 2, Sym‘™'y : M = Sym‘™' A — ¢ is the projection onto so(M).
From last time End(¢) = R, so restricting to so the diagram commutes for some ¢ given by
so(A o AP). By a result we skipped, End(M) is a local ring with s : End(M) — R a local
homomorphism, so ¢ = so(A o AP) is a unit if and only if Ao A is an isomorphism, in which
case e = AP o (Ao AP)"1o ) is idempotent and M = eR,(X) is a direct summand of R (X),
so we're done. Therefore it suffices to prove that there exists ¢ # 0 (mod ¢) making the
diagram commute.

From last time, Hom(elL", ¢) = 0 for > 0. Applying Hom(elL", —) to the second triangle
from Proposition 2 gives an exact sequence

Hom(e", Sym’ ™' A ® L.*) — Hom(elL", Sym* A) — Hom(ell", €) = 0,

and so by induction on i we have Hom(eL", Sym‘ A) = 0 for r > bi. Applying Hom(elL?, —)
to the first triangle from the same proposition with ¢ = ¢ — 1 gives an exact sequence

mf~lg
Hom/(el.", L) LS Hom(elL?, Sym*™" A) — Hom(elL?, Sym*~* A).

Recalling that A lives in the subcategory in degree < b for the slice filtration, and in particular
Sym‘ ™2 A ® L~ lives in degree < ({ —2)b—d = ({ —2)b— ({ — 1)b = —b < 0 and so
HO(X,Sym? A®@ L~ = Hom(e, Sym" 2 A ® L™%) = Hom(elL%, Sym*~2 A) = 0. Therefore
every map elLY — M lifts to an endomorphism of €L, i.e. an endomorphism of €, which
is just a constant; in particular there exists some constant C' lifting the composite A o 7 :
el = Ry (X) — M,ie. Ao7 = CSym‘ ' Since this composite is nonzero modulo ¢ by
Proposition 5, we conclude that C' # 0 (mod /).
Dualizing gives the commutative diagram

M 225 Ro(X) 2= M

Symzfl y l
l o Syml71 y
€E ——— €

since Sym‘ 'y is dual to Sym‘~' z (essentially by Proposition 2) and the structure map
R (X) — €eis dual to 7, with the right triangle commuting by Proposition 4. Since Sym‘ly
is the so-projection, it follows that C' = so(\ o AP) as desired, and so since we know C' # 0

(mod ¢) the claim follows. O

Corollary 7. For z € H*®(X, Zyy) suitable, the corresponding motive M is a symmetric
Chow motive.

Proof. Choose ¢ = ¢ '"A\P o A : Ryy(X) — Ry (X). By Theorem 6 M = Sym‘(A) = (X, e)
is a Chow motive, with transpose (X, e’) defined by

MMM oL Y% RUX) @ LY Ry(X).

We have Hom (M, €) & Hom(M, R;,(X)), which identifies \' with A\P; therefore e = ¢c"1A\fo X
satisfies e = e, i.e. M = (X, e) is a symmetric Chow motive. O
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Corollary 8. For every a € KM (k) and Rost variety X for a, there exists a Rost motive M
for a.

Proof. We know that there exists a suitable z, namely p from section 3; by Propositions 2
and 4 we know that the corresponding motive M = Sym‘~*(A) satisfies conditions (ii) and
(iii), and by Corollary 7 it also satisfies (i) and therefore is a Rost variety for a. O
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