
Norm residue isomorphism theorem: Rost motives
Avi Zeff

1. Introduction

Fix a ∈ KM
n (k) and suppose we have a Rost variety X = Xa for a. Our goal today is to

associate to X a Rost motive M = (X, e) for some idempotent e : X → X with coefficients
in R = Z(`). (We’ll always mean Z(`) by R unless stated otherwise.)

Let’s first recall what a Rost motive is. Let X be the simplicial scheme with objects Xn

and face maps given by projections, and as last time write ε for Rtr(X) and εM for ε ⊗M
for any motive M . We have a structure map y : M → ε and a twisted dual yD : εLd → M ,
where d = dimX = `n−1 − 1. We say that M is a Rost motive associated to X if

(i) M = (X, e) is a symmetric Chow motive,
(ii) there is a map λ : Rtr(X)→M factoring the projection Rtr(X)→ R, and

(iii) there is a motive D fitting into the two distinguished triangles

D ⊗ Lb →M
y−→ ε→, εLd yD−→M → D →,

where b = d/(`− 1) = 1 + `+ · · ·+ `n−2.
The outline of this lecture is as follows: first, given a class z ∈ H2b+1,b(X, R) = Hom(Rtr(X), R(b)[2b+
1]), we will construct a candidate and prove that it satisfies (ii) and (iii). To verify (i), we
need to impose a condition on z, namely that it be “suitable”; we’ll then show that under
this assumption (i) holds, and (using skipped material from section 3) show that such a z
exists to conclude that we can use this construction to get a Rost variety for any X.

2. A candidate

Fix z ∈ H2b+1,b(X, R), i.e. a morphism z : ε → R(b)[2b + 1] = Lb[1] in DMeff
nis(k,R). By a

result from last time, for any motive N we have Hom(ε,N) ∼= Hom(ε, εN) and so z lifts to a
morphism ε→ εLb[1], which we will also denote by z. Up to isomorphism, there is a unique
A with a map y : A→ ε fitting into the triangle

εLb x−→ A
y−→ ε

z−→ εLb[1]→ .

From last time, we have A ∼= A†(b)[2b] = A† ⊗ Lb, and setting yD = y† ⊗ Lb taking X-duals
of this triangle and tensoring with Lb gives the triangle

εLb yD−→ A† ⊗ Lb x†⊗Lb

−−−→ ε
z†[1]⊗Lb

−−−−−→ εLb → .

Lemma 1. There is a map λ1 : Rtr(X) → A factoring the structure map Rtr(X) → ε as

Rtr(X)
λ−→ A

y−→ ε.

Proof. Applying Hom(Rtr(X),−) to the first triangle above gives the exact sequence

Hom(Rtr(X), A)
y−→ Hom(Rtr(X), ε)

z−→ Hom(Rtr(X),Lb[1]) = 0

by the vanishing theorem ([2, 19.3]). Therefore the map sending λ : Rtr(X) → A to its
composition with y : A → ε is surjective, and in particular there exists some λ1 whose
composition with y is the structure map Rtr(X)→ ε as claimed.
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By composing with the structure map ε = Rtr(X) → R, we see that A satisfies (ii), and
so we might expect that A is our candidate to be a Rost motive, and indeed if ` = 2 it is: in
this case b = d and so the above two triangles show that D = ε satisfies (iii). Showing (i) is
harder, but we’ll be able to prove it eventually.

In general though this doesn’t work: for ` > 2 we no longer have b = d, and so the
second triangle here does not correspond to the second triangle required for condition (iii).
To rectify this, in general we define M = Sym`−1(A) and D = Sym`−2(A), which recovers A
and ε in the case ` = 2.

It is not immediate that M satisfies either (ii) or (iii). To prove both, we work in
the following more general setting. Let z ∈ H2p+1,q(X, R) for arbitrary p, q ≥ 0, and set
T = R(q)[2p], so that z is the same thing as a morphism ε→ T [1] or equivalently ε→ εT [1].
As above, let A be the motive fitting into the triangle

εT
x−→ A

y−→ ε
z−→ εT [1]→ .

We have a slice filtration on A, which we can read off this triangle: s0(A) = ε and sq(A) = εT .
(This is the filtration s≥n(M) = RHom(Ln,M) ⊗ Ln corresponding to the subcategory
generated by εR(q) with q ≥ n.)

There is a transfer map tr : Symi(A)→ Symi−1(A)⊗ A sending

a1 ⊗ · · · ⊗ ai 7→
∑
j

(a1 ⊗ · · · âj ⊗ · · · ai)⊗ aj

and a corestriction map cores : Si−1(A)⊗A→ Si(A) sending (a1⊗· · ·⊗ai−1)⊗a to the image
of a1⊗· · ·⊗ai−1⊗a in Symi(A) = A⊗i/Si. Let u = (id⊗y)◦tr : Symi(A)→ Symi−1(A)⊗A→
Symi−1(A) ⊗ ε ∼= Symi−1(A) and v = cores ◦(id⊗x) : Symi−1(A) ⊗ T → Symi−1(A) ⊗ A →
Symi(A). We have Symi T = T i by [2, 15.7], and so Symi(εT ) ∼= εSi(T ) ∼= εT i. Therefore
Symi x is a map εT i → SymiA.

Proposition 2. There exist unique morphisms r : Symi−1(A) → εT i[1] and s : ε →
Symi−1(A)⊗ T [1] such that we have distinguished triangles

εT i
Symi x−−−−→ Symi(A)

u−→ Symi−1(A)
r−→ εT i[1]→

and

Symi−1(A)⊗ T v−→ Symi(A)
Symi y−−−→ ε

s−→ Symi−1(A)⊗ T [1],

and under the slice filtration on Symi(A), restricted to s<qi(SymiA) u is an isomorphism
onto Symi−1(A); similarly v identifies s>0(SymiA) with Symi−1(A)⊗T ; and Symi y identifies
ε with s0(SymiA).

Observe that taking p = q = b and i = ` − 1 gives distinguished triangles as in (iii) for
M = Sym`−1A and D = Sym`−2A, since then T = Lb and T i = Lb(`−1) = Ld.

Proof. We have sn(A⊗i) =
∑

n1+···+ni=n
sn1(A) ⊗ · · · ⊗ sni

(A). We can take the symmetric

part uniformly to get a decomposition of sn(SymiA) into terms of the form sm(A), which
are 0 unless m = 0 or m = q as above. Thus sn(A) consists of tensors of up to i copies of
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things living in degree q as well as potentially sum in degree 0, and therefore sn(A) is trivial
unless n = qj for some j ≤ i.

Since εT i = εR(q)[2p] is concentrated in slice degree qi, Symi x injectively maps it into
sqi(SymiA); its cokernel in this part is the image of εT i in sqi(Symi−1A) = 0 because we
cannot have qi = qj for j ≤ i − 1. Therefore Symi x identifies εT i with sqi(SymiA) as
claimed.

Expanding the definition of u, we see that its part in degree qj, i.e. sqj(u), is just
multiplication by i− j, which is an isomorphism for j < i. The existence and uniqueness of
r then follows from the lemma below. Essentially the same argument applies to the second
case.

Lemma 3. Suppose we have a sequence A
a−→ B

b−→ C with A in slice degree ≥ n and C
in slice degree < n. If si(a) is an isomorphism for i ≥ n and si(b) is an isomorphism for

i < n, then there is a unique morphism c : C → A[1] such that A
a−→ B

b−→ C
c−→ A[1] is a

distinguished triangle, which identifies A and C with s≥nB and s<nB respectively.

Proof. Choose any distinguished triangle A
a−→ B → C ′ → A[1] extending a. Since ba = 0

(since it is a map from A in degree ≥ n to C in degree < n), b factors through some
φ : C ′ → C. For i < n, taking si of everything si(b) is an isomorphism and so si(φ) must
be as well; for i ≥ n, si(a) is an isomorphism and so si(B → C ′) must be the zero map, as
is si(B → C) since C is in degree < n, and so si(φ) is trivially an isomorphism. Therefore
si(φ) is always an isomorphism and so φ must be as well. Thus precomposing C ′ → A[1]
with φ−1 gives the desired triangle.

To get uniqueness, suppose that (a, b, c′) is a second triangle on (A,B,C). Then there is
an endomorphism f : C → C giving a morphism of triangles (idA, idB, f). Since s<n(b) is an
isomorphism, s<n(f) must be the identity.

Finally, the last assertion follows since s≥nC = 0 and so s≥n(a) : s≥nA = A → s≤nB is
an isomorphism, and similarly for s<n(b) : s<nB → s<nC = C.

Next, we want to show that M also satisfies (ii).

Proposition 4. There exists a map λ : Rtr(X) → M = Sym`−1(A) factoring Rtr(X) → ε

as Rtr(X)
λ−→ Sym`−1(A)

Sym`−1 y−−−−−→ ε.

Proof. Recall that Rtr(X) → ε factors through λ1 : Rtr(X) → A by Lemma 1. Taking this
as the base case, we’ll show that for every i < ` we have a map λi : Rtr(X) → Symi(A)
factoring Rtr(X)→ ε.

Applying Hom(Rtr(X),−) to the first triangle of Proposition 2 gives the exact sequence

Hom(Rtr(X), Symi(A))
u−→ Hom(Rtr(X), Symi−1(A))

r−→ Hom(Rtr(X), εT i[1]) = 0

by the vanishing theorem again, so in particular λi−1 : Rtr(X) → Symi−1(A) factors as
λi−1 = u ◦ λi for some λi : Rtr(X) → Symi(A). By induction we conclude that Rtr(X) → ε
factors as y ◦ u ◦ · · · ◦ u ◦ λ`−1 since u ◦ · · · ◦ u ◦ λ`−1 = λ1 and we know from Lemma 1 that
y ◦ λ1 is the desired structure map. But yu`−1 = Sym`−1 y by the definition of u, and so the
result follows.
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3. Suitable cohomology classes

It remains to show that our candidate M = Sym`−1(A) satisfies (i), i.e. is a symmetric Chow
motive, where A is constructed as above from a cohomology class z ∈ H2b+1,b(X,Z(`)). In
fact this is not true for arbitrary z; but we will impose a condition on it that makes it true.

We need the motivic cohomology operations Qi : H∗,∗(X,Z`) → H∗+2`i−1,`i−1(X,Z/`).
These are defined by Q0 = β and Qi+1 = P `iQi−QiP

`i (for ` > 2), where P i are Voevodsky’s
reduced power operations and β is the Bockstein map.

Definition. We say that z ∈ H2b+1,b(X,Z(`)) is suitable if its mod ` reduction z̄ satisfies
Qn−1(z̄) 6= 0 and Qi(z̄) = 0 for every 0 ≤ i < n− 1.

If z = β̃Q1 · · ·Qn−2(δ), where β̃ is the integral Bockstein, then z is suitable if and only if
Qn−1(z̄) 6= 0, since z̄ = Q0 · · ·Qn−2δ and so Qi(z̄) = 0 since the Qi anticommute and square
to 0.

From the part of section 3 that we skipped, since X splits a 6= 0, assuming BL(n − 1)
there is a unique nonzero lift δ ∈ Hn,n−1(X,Z/`) = Hn(X,Z/`(n − 1)) of a ∈ KM

n (k) =
Hn(X,Z/`(n)), and µ = β̃Q1 · · ·Qn−2δ ∈ H2b+1,b(X,Z/`) satisfies Qn−1(µ) 6= 0 and therefore
is suitable.

We now need the notion of the fundamental class τ of X. Recall that by motivic duality
Rtr(X) ' Rtr(X)∗ ⊗ Ld, and so

Hom(Ld, Rtr(X)) ∼= Hom(Ld, Rtr(X)∗ ⊗ Ld) ∼= Hom(Rtr(X), R) = H0(X,R).

The cohomology H∗(X,R) is a ring and in particular has an identity 1 ∈ H0(X,R), which
thus corresponds to a canonical map τ : Ld → Rtr(X) and thus another map εLd → Rtr(X),
also denoted τ .

Proposition 5. Let z ∈ H2b+1,b(X,Z/`) be such that Qn−1(z) 6= 0 and Qi(z) = 0 for
0 ≤ i < n− 1. Then the composition

εLd τ−→ Rtr(X)
λ−→ S`−1(A)

is nonzero, where R = Z/`.

This follows from more magic in section 13 and our factorization of the structure map.
Since symmetric powers commute with duals and A ∼= A† ⊗ Lb, we have Symi(A) ∼=

Symi(A)† ⊗ Lbi. Therefore we can define the dual map

λD : Sym`−1(A) ∼= Sym`−1(A)† ⊗ Ld λ†⊗Ld

−−−→ Rtr(X)† ⊗ Ld ∼= Rtr(X).

Theorem 6. Suppose that z ∈ H2b+1,b(X,Z(`)) is suitable. Then the composition λ◦λD is an
isomorphism on M = Sym`−1(A), and there is a constant c ∈ Z(`) such that λ◦τ = c Sym`−1 x
and the following diagram commutes:

M M

ε ε

λ◦λD

Sym`−1 y Sym`−1 y

c

.
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In particular λD splits λ, so that M = Sym`−1(A) is a direct summand of Rtr(X) and so
a Chow motive.

Proof. By Proposition 2, Sym`−1 y : M = Sym`−1A → ε is the projection onto s0(M).
From last time End(ε) = R, so restricting to s0 the diagram commutes for some c given by
s0(λ ◦ λD). By a result we skipped, End(M) is a local ring with s0 : End(M) � R a local
homomorphism, so c = s0(λ ◦ λD) is a unit if and only if λ ◦ λD is an isomorphism, in which
case e = λD ◦ (λ ◦λD)−1 ◦λ is idempotent and M = eRtr(X) is a direct summand of Rtr(X),
so we’re done. Therefore it suffices to prove that there exists c 6≡ 0 (mod `) making the
diagram commute.

From last time, Hom(εLr, ε) = 0 for r > 0. Applying Hom(εLr,−) to the second triangle
from Proposition 2 gives an exact sequence

Hom(εLr, Symi−1A⊗ Lb)→ Hom(εLr, SymiA)→ Hom(εLr, ε) = 0,

and so by induction on i we have Hom(εLr, SymiA) = 0 for r > bi. Applying Hom(εLd,−)
to the first triangle from the same proposition with i = `− 1 gives an exact sequence

Hom(εLd, εLd) Sym`−1 x−−−−−→ Hom(εLd, Sym`−1A)→ Hom(εLd, Sym`−2A).

Recalling that A lives in the subcategory in degree≤ b for the slice filtration, and in particular
Sym`−2A ⊗ L−d lives in degree ≤ (` − 2)b − d = (` − 2)b − (` − 1)b = −b < 0 and so
H0(X, Sym`−2A ⊗ L−d) = Hom(ε, Sym`−2A ⊗ L−d) = Hom(εLd, Sym`−2A) = 0. Therefore
every map εLd → M lifts to an endomorphism of εLd, i.e. an endomorphism of ε, which
is just a constant; in particular there exists some constant C lifting the composite λ ◦ τ :
εLd → Rtr(X) → M , i.e. λ ◦ τ = C Sym`−1 x. Since this composite is nonzero modulo ` by
Proposition 5, we conclude that C 6= 0 (mod `).

Dualizing gives the commutative diagram

M Rtr(X) M

ε ε

λD

Sym`−1 y

λ

Sym`−1 y
C

since Sym`−1 y is dual to Sym`−1 x (essentially by Proposition 2) and the structure map
Rtr(X)→ ε is dual to τ , with the right triangle commuting by Proposition 4. Since Sym`−1 y
is the s0-projection, it follows that C = s0(λ ◦ λD) as desired, and so since we know C 6= 0
(mod `) the claim follows.

Corollary 7. For z ∈ H2b+1,b(X,Z(`)) suitable, the corresponding motive M is a symmetric
Chow motive.

Proof. Choose e = c−1λD ◦ λ : Rtr(X) → Rtr(X). By Theorem 6 M = Sym`−1(A) ∼= (X, e)
is a Chow motive, with transpose (X, et) defined by

λt : M ∼= M∗ ⊗ Ld λ∗⊗Ld

−−−−→ Rtr(X)∗ ⊗ Ld ∼= Rtr(X).

We have Hom(M, ε) ∼= Hom(M,Rtr(X)), which identifies λt with λD; therefore e = c−1λt ◦λ
satisfies et = e, i.e. M = (X, e) is a symmetric Chow motive.
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Corollary 8. For every a ∈ KM
n (k) and Rost variety X for a, there exists a Rost motive M

for a.

Proof. We know that there exists a suitable z, namely µ from section 3; by Propositions 2
and 4 we know that the corresponding motive M = Sym`−1(A) satisfies conditions (ii) and
(iii), and by Corollary 7 it also satisfies (i) and therefore is a Rost variety for a.
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