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1. Geometrizing the local Langlands correspondence

For today, and indeed for much of the seminar, we’re going to focus in on the local Langlands
correspondence. As Kevin told us last time, this is a correspondence of the following shape:
if G is a reductive group (say split for simplicity) over a local field E (such as Qp, R, or
Fq((t))), we’re interested in the set of smooth irreducible representations π of G(E). In
the case of archimedean fields, i.e. E = R or C, these are understood by classical work of
Langlands and Harish-Chandra: to each π we associate a map ϕπ : WE → Ĝ(C), called the
L-parameter of π, where WE is the Weil group of E (given by C× for E = C and a nonsplit
extension of C× by Gal(C/R) = {±1} for E = R) and Ĝ is the Langlands dual group Kevin
told us about. This association π 7→ ϕπ has finite fibers, which are the objects of a large
amount of study; in the case G = GLn, the fibers are singletons and so π 7→ ϕπ is a bijection.

The idea is that the same thing should hold true for arbitrary local fields E; in particular
we’ll focus on E nonarchimedean, so not R or C, and the case of most interest is E a p-adic
field, i.e. a finite extension of Qp (though we’ll generally try to handle nonarchimedean E
uniformly). The only thing we have to change in the above is the definition of the Weil
group WE: for E nonarchimedean, with residue field k = Fq, we have a map Gal(E/E) →
Gal(k/k) ' Ẑ, and WE is the preimage under this map of Z ⊂ Ẑ generated by the Frobenius
x 7→ xq.

As Kevin told us, this is known for G = GLn, by the work of Michael Harris among
others, and these days for certain other classical groups, but not in general. The goal of
Fargues–Scholze is to propose a uniform local Langlands correspondence, constructing a
map π 7→ ϕπ, which comes out of some more powerful structure and which we hope explains
the relationship between the representation theory of G(E) and WE, and the appearance of
the Langlands dual group Ĝ. The upshot is a categorical local Langlands correspondence,
which was previously exclusively the realm of geometric Langlands.

The basic idea of Fargues is to geometrize the local Langlands program using the Fargues–
Fontaine curve. This is something roughly like a curve which can be associated to a given
local field E. We know a Langlands program for arbitrary curves: the geometric Langlands
program, which additionally can give not only a finite-to-one map with various properties
but a full equivalence of categories (in particular the Fargues–Fontaine curve does not live
over a finite field, and so is not in the realm of classical function field Langlands). Thus
the idea is to try to do geometric Langlands for the Fargues–Fontaine curve, and then the
hope is that this a priori geometric program will shed light on, or even be equivalent to, the
arithmetic local Langlands program.

There are a number of issues here. One is that the Fargues–Fontaine curve is not literally
a curve, and is best understood as not even a scheme but an adic space, or better a diamond.
Another is that even if a geometric Langlands correspondence for the Fargues–Fontaine curve
can be written down, it’s not obvious it should have any connection to the problem for the
original local field. Nevertheless, this turns out to be possible, after developing a remarkable
amount of machinery to deal with the technical difficulties, including the geometry of dia-
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monds and v-stacks and condensed and solid mathematics. We will mostly skip lightly over
these ideas, and say only what the constructions allow us to do (with at most hints of what
goes into them).

2. BunG and sheaves on it

In the usual geometric Langlands program, the main object of study on the geometric side is
BunG, the stack of G-bundles on our curve X. Specifically, if the base field is k, for any test
k-scheme S the S-points of BunG are G-bundles on S ×k X. As Kevin discussed, functions
on BunG(k) can be thought of as automorphic forms, and correspond (at least when k is
finite) via trace of Frobenius to sheaves on BunG.

Much of the relevance of BunG comes from the Hecke action on it. This works as follows:
we have some stack HkG, which roughly speaking parametrizes a pair of G-bundles E1, E2,
together with a “modification,” i.e. an isomorphism between E1 and E2 away from some
point x. Remembering only E1, E2, or x gives two natural projections from HkG to BunG
and one to X, which we usually think of as a diagram

HkG

BunG BunG×X

.

If we start with a sheaf on BunG (which is a geometric incarnation of an automorphic form)
we can pull it back to HkG and then push forward to the product to get a sheaf on BunG×X,
which can be thought of as a π1(X)-equivariant object on BunG. (This is because in a certain
sense the Hecke operator given by this push-pull is locally constant in x, and so varying x
gives an action of π1(X).) Since π1(X) is the geometric incarnation of the Galois group (and
for function field Langlands is literally the same thing), this shows where the Galois action
is coming from.

In our case, the group we are hoping will show up is not the whole Galois group but
only the Weil group WE. In the function field case, this is analogous to replacing our curve
X/k by first base changing to the algebraic closure Xk̄ and then quotienting by Frobenius:
the map Xk̄/ϕ → k̄/ϕ → k at least heuristically corresponds to taking only the piece of
π1(Spec k) generated by Frobenius. We don’t have a curve X but instead a local field E;
base changing to k̄ can be thought of as replacing E by Ĕ = E ⊗W (k) W (k̄), the completion
of the maximal unramified extension of E. Thus the object X we want to appear in the
above diagram should be something like (Spec Ĕ)/ϕ.

However, we run into trouble using this X to define BunG, since it isn’t a curve in any
usual sense. Instead, we think about the functor of points: BunG is supposed to send a
test scheme S (over the base field, which for now we take to be Fp) to the set, or groupoid,
of G-torsors on S ×k (Spec Ĕ)/ϕ. If E = Fq((t)) is a local function field, this more or less
literally works: if S = SpecR, then this should be SpecR((t))/ϕ. (This quotient is still
tricky, but if we work in the category of adic spaces instead of schemes there is no difficulty.)

If E is a p-adic field, however, we have more substantial problems: this product no longer
makes any sense. The key idea is that R⊗k Ĕ should be something like W (R)⊗W (k) Ĕ: this
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carries a canonical map from Ĕ, as expected, and although there can be no map of rings from
R, since R is characteristic p and W (R) is characteristic 0, there is a map of multiplicative
monoids, sometimes called the Teichmüller map, R → W (R), so this is some analogue of
the tensor product (or dually the fiber product). To make sure this is well-behaved, we
replace the category of all Fp-schemes by the category Perf of (adic) perfectoid spaces over
Fp, which is generally the test category for diamonds and v-sheaves.

Now we can form the Fargues–Fontaine curve: given a test space S in Perf and a local
field E, we define XS,E = (S×̇ Spa Ĕ)/ϕ, where Spa means that we’re taking adic spaces
rather than schemes, the symbol ×̇ means this weird product defined via Witt vectors (in
the mixed characteristic case), and ϕ comes from the Frobenius on S. This is not a single
curve associated to E: instead, it’s like the family of spaces S ×k X for a given base curve
X, in that these are supposed to be analogous to products. Therefore we define the S-points
of BunG to be G-torsors on XS,E.

We can recover something like our original target of (Spec Ĕ)/ϕ by looking at “degree 1
divisors” on the Fargues–Fontaine curve: unlike with a usual curve, these are classified not
by the same thing but by a space Div1 which can be seen to be isomorphic to (Spa Ĕ)/ϕ.
Unlike the Fargues–Fontaine curve, which is an honest adic space and can even be viewed
as a scheme, Div1 is only a diamond. This does mean though that modifications of vector
bundles, classified by the Hecke stack HkG, are projected to BunG and BunG×Div1, so
π1(Div1) = WE arises as desired.

It is not at all obvious that this functor BunG on Perf should have any kind of reasonable
geometry admitting categories of sheaves, but it does in fact turn out to be true and there
is a particular derived category D(BunG,Q`) with good properties (which takes quite a lot
of work to define; recent work, as in Tuesday, of Lucas Mann provides a slightly different
but in some ways more natural category, and it will be interesting to see how his version
behaves in the Langlands world). It should be emphasized that this is not the naive notion
(it is instead what Fargues–Scholze call Dlis(BunG,Q`), but we haven’t said what this would
mean).

Further, we have a stratification of BunG by locally closed substacks BunbG for b ∈ B(G)
classifying inner forms Gb of G, and further BunbG ' [∗/G̃b(E)] for some extension G̃b. For
b basic, this extension is trivial, and the semistable locus Bunss

G decomposes as⊔
b

[∗/Gb(E)]

over b basic in B(G). In particular, D(BunG,Q`) decomposes as a sum of the D(BunbG,Q`),
and for b basic D(BunbG,Q`) ' D([∗/Gb(E),Q`) ' D(Gb(E),Q`), the derived category of
smooth Gb(E)-representations. In particular D(G(E),Q`) embeds into D(BunG,Q`), so
studying sheaves on BunG gives a direct geometrization of studying smooth representations
of G(E).

3. Geometric Satake

We have sort of seen where the Galois action comes in to the picture when we’re studying
representations of G(E) (we’ll be more explicit about this soon), but we still haven’t said
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anything to explain the presence of the Langlands dual group Ĝ. The answer is again through
the Hecke action. In particular, we have the following version of geometric Satake: there is a
natural symmetric monoidal functor Rep Ĝ→ D(HkG,Q`). Therefore given a representation
V of Ĝ, we get a derived sheaf of Q`-modules on HkG, which by the push-pull above and
tensoring with this sheaf in the middle (essentially integrating against this kernel) we get an
operator TV : D(BunG,Q`)→ D(BunG,Q`)BWE , i.e. landing in WE-equivariant objects.

Before we talk about how we can assemble this structure to produce L-parameters for
a given representation π of G(E), let’s first say something about how this functor is built.
Roughly, this will be as follows: first, we look at a certain subcategory of sheaves SatIG
on a Hecke stack with multiple legs indexed by a finite set I, and define a fusion product
SatIG× SatIG → SatIG. Just as HkG lives over Div1, once we have legs indexed by I this
lives over (Div1)I , so we can push forward to I to get local systems on (Div1)I , which
by a version of Drinfeld’s lemma are the same thing as W I

E-representations, so we get a
symmetric monoidal functor SatIG → RepW I

E. By Tannakian theory, there should be some
Hopf algebra HI (ind-)internal to RepW I

E such that SatIG is the representation category,
internal to RepW I

E, of HI . Since everything is functorial in I, this boils down to the case
I = {∗}, where H{∗} is some affine group scheme over the coefficients with a WE-action.
This turns out to be exactly Ĝ, with SatIG ' Rep(Ĝ oWE)I , and so we get a natural map
from representations of Ĝ into WE-equivariant sheaves on HkG.

4. L-parameters

We are now ready to construct the L-parameters. I don’t want to write this out again so I’ll
refer to notes here.

5. The categorical conjecture

We now have two geometric objects: BunG and this stack of Langlands parameters up to
conjugacy Z1(WE, Ĝ)/Ĝ. Following the form of the geometric Langlands correspondence
suggests that the conjecture should be the following:

D(BunG,Z`)ω ' Db,qc
coh,nilp(Z1(WE, Ĝ)/Ĝ)

as stable infinity-categories, where ω denotes compact objects and Nilp denotes nilpotent
singular support, which we will not get into. In fact we can say slightly more: we discussed
a WE-action on each side through geometric Satake, which can be upgraded to an action
of the category Perf(Z1(WE, Ĝ)/Ĝ) of perfect complexes on the stack of Langlands param-
eters up to conjugacy on each side, and this equivalence should respect this action. This
correspondence should send the structure sheaf on the right to the Whittaker sheaf on BunG
corresponding to the Whittaker representation, which depends on a choice of Whittaker
datum on which the equivalence depends.

In particular, the left-hand side canonically includes D(G(E),Z`)ω, and so gives a cate-
gorical description (with no decategorification necessary) of smooth representations of G(E).
This is roughly what we hope to accomplish with coefficients in Zp-algebras.
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