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1 Introduction

In today’s talk I will be discussing Vinogradov’s theorem which states that every
large integer is the sum of three primes. Along with this statement, Vinogradov
also obtained an asymptotic formula for the number of representations of an
odd integer as the sum of three primes. In this section which corresponds to
section 8.1 in the textbook I will go over the counting function and asymptotic
function.

Counting function for odd integers r(N):
r(N) =

∑
p1+p2+p3=N

The asymptotic formula for r(N) deals with the cases of when the number
of odd integers N is really large, and gives the estimate of prime numbers up to
a given limit.

Theorem 8.1: There exists an arithmetic function S(N) and positive con-
stants c1 and c2 such that

c1 < S(N) < c2
for all large numbers N and

r(N) = S(N) N2

2(logN)3 (1 +O( loglogNlogN ))

where S(N) is a singular series, which I will explain in the next section.

2 The singular series

In this section I will define singular series which are series involving arithmetic
functions and help understand the distribution of prime numbers. In this section
I will

• Define the arithmetic function S(N) and cq(N)

• Show that the singular series can be expressed as an infinite product over
prime numbers
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• Explain there are two positive constants to bound the singular series

First we have the arithmetic function:

S(N) =
∑∞

q=1(
µ(q)cq(N)

q3

where
cq(N) =

∑q
a=1and(q,a)=1 e(aN/q)

Theorem 8.2 The singular series S(N)converges absolutely and uniformly in
N and has the Euler product

S(N) =
∏

p(1 +
1

(1−p)3 )
∏

p|N (1− 1
p2−3p+3 )

There exist positive constants c1 and c2 such that
c1 < S(N) < c2

for all positive integers N. Moreover, for any ϵ > 0,

S(N,Q) =
∑

q
µ(q)cq(N)

q3 = S(N) +O(Q−(1−ϵ))
where the implied constant depends only on ϵ

From this Theorem we know that the arithmetic function can be expressed
as an infinite product over prime numbers and this product has to be bounded
by two constants. The section then goes on to prove why these two constants
exist by using the circle method.

3 Decomposition into major and minor arcs

In this section we will use decomposition to understand exponential sums. The
motivation of this section is to show that the major arc will correspond to the
intervals where the exponential sums will have significant contributions to the
integral, and the minor arcs will correspond to the where intervals of exponential
sums have a small contribution. In this section I will explain:

• Define terms Q, q, and a and set up an interval for the arc and define the
major and minor arc

• Use the counting function in 8.1 and write it as a weighted sum

• Use the circle method to write the weighted sum function R(N) as the
integral over the major and minor arcs

• Finishing with the final result of the decomposition

First lets define terms:
Let B > 0

Q = (logN)B for

1 ≤ q ≤ Q
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0 ≤ a ≤ q and

(a, q) = 1

The major arcM(q, a) is the interval consisting of all real numbers α ϵ [0, 1]
such that

|α− a
q | ≤

Q
N

Next we will use an example of an intersection to prove that the major
arcM(q, a) are disjoint for a large N because it does not satisfy an inequality.
If you want to see the example it is in the book.

Now we will define the major arc as a set:

M = ∪Q
q=1 ∪a=0 and(a, q) = 1

q
M(q, a) ⊂ [0, 1]

The set of minor arcs is:

m = [0,1]
M

Now we want to write the major and minor arc sets in the form of an integral
of trigonometric polynomial over the major and minor arcs. To do so we need
to use:

• a weighted sum over the representations of N as a sum of three primes
R(N) =

∑
p1+p2+p3=N logp1logp2logp3

• The generating function for R(N) written as the the exponential sum over
over primes
F (α) =

∑
p≤N (logp)e(pα)

From R(N) and F (α) we can write

R(N) =
∑

p1+p2+p3=N logp1logp2logp3 =
∫ 1

0
F (α)3e(−Nα)dα

From here we can rewrite the integral as two different integrals one over the
major arc and one over the minor arc.

=
∫
M

F (α)3e(−Nα)dα+
∫
m
F (α)3e(−Nα)dα

Hence we get two different integrals we wanted to represent the major and
minor arc.

4 The Integral over the major arcs

In this section we are looking at the integral we found in the last section and
we want to evaluate it. In order to do this we must know that the major arc
portion of the integral is the product of the singular series (N) and an integral
J(N), and J(N) we are able to evaluate. In this section I will explain:
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• Give the estimate for the major arc J(N) which is the integral over the
major arc, and write out the simple proof

• Then using Theorem 8.3 which will help us understand the distribution of
primes in arithmetic progression by giving us an estimate for the frequency
of primes in arithmetic progression with respect to modulus.

• Lemma 8.2 will help us write a new function that incorporates the major
and minor arcs in section 8.3 by diving it by q.

• Then we will check that C > 2B for the function F (α)3 and F (α)

• Then we will get the integral over the major arc and estimate it

• Finally we will be left with the estimation of the integral

Lemma 8.1 Let

u(β) =
∑N

m=1 e(mβ)

then

J(N) =
∫ 1/2

−1/2
u(β)3e(−Nβ)dβ = N2

2 +O(N)

J(N) is the integral over the major arc which gives us an estimate. Then we
will proof this very quickly.
Proof By Theorem 5.1, the number of representations of N as the sum of three
positive integers is:

J(N) =
∫ 1/2

−1/2
u(β)3e(−Nβ)dβ

=
∫ 1/2

−1/2

∑N
m1=1

∑N
m2=1

∑
m3 = 1Ne((m1 +m2 +m3 −N)β)dβ

= N−1
2

= N2

2 +O(N)

Which completes the proof. The next theorem I will define will help us in the
following lemma.
Theorem 8.3 Siegel-Walfisz If q ≥ 1and(q, a) = 1, then, for any C > 0

v(x; q, a) =
∑

p≤xandp∼=a(modq) logp = x
ϕ(q) +O( x

(logx)C

for all x ≥ 2, wheretheimpliedconstantdependsonlyonC. This theorem will help
us estimate Fx(α) in the next Lemma.
Lemma 8.2 Let

Fx(α) =
∑

p≤1(logp)e(pα)

Let B and C be positive real numbers. If 1 ≤ q ≤ Q = (logN)Band(q, a) =
1, then
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Fx(a/q) =
µ(q)
ϕ(q)x+O( QN

(logN)C

for 1 ≤ x ≤ N , where the implied constant depends only on B and C.
To proof and explain this lemma we want to consider:

• estimate Fx(α) when α is rational

• We use Fx(a/q) because if α = a/q is rational

• e(ya/q) is a periodic function y with period q, and e((y+q)a/q) = e(ya/q+
a) = e(ya/q)e(a) = e(ya/q)becausee(x) = 1whenxisaninteger.

• e(pa/q) only depends on the class of p(modq)

• So we split up the sums into:

Fx(
a
q ) =

∑q
r=1

∑
p≤xandp∼=r(modq)(logp)e(

pa
q )

Each of these sums can be written as e(ra/q) times the sum of logpoverp ≤
xwhicharermodq

• By the Siegel-Walfisz theorem we can estimate these sums.

• Then we get the sum∑q
r=1and(r,q)=1 e(

ra
q )( x

ϕ(q) +O( x
(logx)C

)) +O(logQ)

• We can now pull out the x
ϕ(q) and the remaining sum is by definition ca(q),

which Theorem A.24 tell us is µ(q) just as long as gcd(a, q) = 1

• So finally we get

µ(q)
v(q)x+O( QN

(logN)C

Which is what we wanted

Lemma 8.3 Let B and C be positive real numbers with C > 2B. If
αϵM(q, a)andβ = α− a/q, then,

F (α) = µ(q)
ϕ(q)u(β) +O( Q2N

(logN)C

and

F (α)3 = µ(q)
ϕ(q3)u(β)

3 +O( Q2N3

(logN)C

where the implied constants depend only on B and C
To understand and proof this Lemma we need to think about:

• the error term can be written as O( N
(logN)(C−2B)

because B relates toQ ≤
(logN)B this is why it is important that C > 2B in order to get an error
term that is smaller than O(N).
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• the main idea of the proof is that if α is close to a rational number a/q
which is in a piece of the major arc labeled by a/qorβ = α − a/q has a
very small value

• then we can use Lemma 8.2 to bound |F (α) − µ(q)u(β)| if β = 0andα =
a/qisrational, thenu(0) = NandsowegetF (α) = F (a/q) = µ(q)/ϕ(q)N +
asmallerrorwhichisthestatmentofLemma8.2 this lets us generalize a small
part of a neighborhood of a/q.

Next we will get the estimate for the major arc integral.
Theorem 8.4 For any positive numbers B,C, and ϵwithC > 2B, the integral
over the major arc is∫

M
F (α)3e(−Nα)dα = S(N)N

2

2 +O( N2

(logN)(1−ϵ)B ) +O( N2

(logN)C−5B

where the implied constants depend only on B,C, andϵ
We use the information from Lemma 8.3 that this integral is a small absolute
value for α in the a/q part of the major arc, so multiplying by e(−Nα) and
integrating over this part of the major arc and then adding all the (a,q) we find
a small result. ∫

M
(F (α)3−)3 − µ(q)

ϕ(q)3u(α− a
q )

3)e(−Nα)dα

So by multiplying by e(−Nα) and integrating over this part of the major arc
and then adding up over all the (a,q) we find that the result is very small. This
tells us that:∫

M
F (α)3e(−Nα)dα-

∫
M
(F (α)3−)3 − µ(q)

ϕ(q)3u(α− a
q )

3)e(−Nα)dα

The first integral is what we want and it is equal to the second integral up to
some small error, so we can work with it instead. Then we sum it over various
different possibilities for (a,q). Now we can:

• µ(q)/ϕ(q)3 part pulls out and then we change variables to get

• e(−Na/q) factor

• In the integral we are left with u(β)3e(−Nβ)

• Summing and integrating we end up with the singular seriesS(N)timesthesingularintegralJ(N)

• We can estimate using Lemma 8.1

With an end result of:

= S(N)N
2

2 +O( N2

(logN)1−ϵB ) +O( N2

(logN)C−5B )
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5 Exponential sums over primes

This section is about the proof of a bound which will go into bounding the minor
arc in the next section. This section will use Vaughan’s identity because it is a
more simplified version of using sieve methods. This section is quite technical
so I will go over the main ideas which are:

• The main result of this section is the estimate for the exponential sum
F (α) by using the sums S1, S2, S3

• To do this we use Vaughan’s identity and define it as it is more simple
than using sieve methods

• Then we use this identity to get the three sums S1, S2, S3

Lemma 8.4 Vaughan’s identity, For u ≥ 1, Let

Mu(k) =
∑

d|ℓ d ≤ uµ(d)

Let Φ(k, ℓ) be an arithmetic function of two variables. Then∑
u<ℓ≤N Φ(1, ℓ) +

∑
u<k≤N

∑
u<ℓ≤N

ℓ
Mu(k)Φ(k, ℓ) =∑

d≤u

∑
u<ℓ≤N

d

∑
m≤ N

ℓd
µ(d)Φ(dm, ℓ)

The proof of this identity is in the book.
Then we have the exponential sum F (α) = S1 − S2 − S3 + O(N1/2) which we
will approximate using:

S1 =
∑

d≤N2/5

∑
ℓ≤N

d

∑
m≤ N

ℓd
µ(d)Λ(ℓ)e(αdℓm)

S2 =
∑

d≤N2/5

∑
ℓ≤N2/5

∑
m≤ N

ℓd
µ(d)Λ(ℓ)e(αdℓm)

S3 =
∑

k>N2/5

∑
N2/5<ℓ≤N

k
N 2

5
(k)Λ(ℓ)e(αkℓ)

To proof this we will apply Vaughan’s identity with u = N2/5 and Φ(k, ℓ) =
Λ(ℓ)e(αkℓ).
With the application of Vaughan’s identity we end up with

S1 ≪ (Nq +N2/5 + q)(logN)2

S2 ≪ (Nq +N4/5 + q)(logN)2

S3 ≪ (logN)4( N
q1/2

+N4/5 + q1/2N1/2)
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6 Proof of the asymptotic formula

The final section will assemble everything together to prove the formula.The
real goal is to prove that every sufficiently large odd number can be written as
the sum of three primes, i.e.r(N)1 for N odd and sufficiently large. To do this
we will:

• first for R(N) and then deducing the formula for r(N) from it

Theorem 8.7Vinogradov LetS(N)bethesingularseriesfortheternaryGoldbachproblem.ForallsuffcientlylargeoffintegersNandforeveryA >
)

R(N) = S(N)N
2

2 +O( N2

(logN)A
)

where the implied constant depends only on A.
We want to take

R(N) = SN2

2 +O( N2

(logN)A

and turn it into

r(N) = S(N) N2

2(logN)3 (1 +O( loglogNlogN ))

From R(N) to r(N) we need to find the upper bound for R(N) which is

≪ N2−δ

(logN)2

Now we need to get a lower bound for R(N)

≫ (1− δ)3(logN)3(r(N)− N2−δ

(logN)2

By setting up the inequality:

(logN)3r(N) ≤ (1− σ)−3R(N) + (logN)2−σ

Then by using Theorem 8.7 we can solve for R(N) by using the fact of R(N) ≪
N2 which is:

0 ≤ (logN)3r(N)−R(N) ≤ ((q − σ)−3 − 1)R(N) + (logN)N2−σ which
deduces to N2(σ + logN

Nσ )

Now we will deduce this equation to find r(N).
Then we find the value of σ that makes the equation hold which is:

σ = 2loglogN
logN

Plug this into the same inequality as before:

0 ≤ (logN)3r(N)−R(N) ≪ N2loglogN
logN

Then by using Theorem 8.7 again we are able to solve for r(N).

r(N) = S(N) N2

2(logN)3 (1 +O( loglogNlogN ))

The important take away is that the real goal is to prove that every suffi-
ciently large odd number can be written as the sum of three primes or r(N) ≥
1forNoddandsufficientlylarge. Here they focus on the precise formula for
r(N), but to prove this we can also show that R(N) goes to infinity.
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