Homework 1 solutions

Additive number theory seminar
Due February 28, 2023 by 11:40 AM

Problem 1. The Fibonacci numbers are defined by the recurrence a9 = a; = 1, a, =
Gp_1 + a,_o for n > 2. Consider the “modified Fibonacci numbers” defined by by = b; = 1
but b, = b,—1 + 2b,_5 for n > 2 (so the first few terms are 1,1,3,5,11,21,43,...). Using
generating functions, find an exact formula for b,.

Solution. Let -
F(z) = Z bya™.
n=0

We have b, = b,_1 + 2b,,_o for n > 2 and by = b =1, so
F(z) = Z b,x"™
n=0

=142+ (byoy+ 2by)2"

n=2

=1+x+ ibn_lx” + Qi by—ox™
n=2 n=2

=14+ ibnanrl +2ibnxn+2
n=1 n=0

=1+az+2(F(x)—1)+22°F()
=1+ 2F(x) + 22°F(x).

Collecting terms of F(z) gives

1.e.
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The polynomial 1 — z — 2% = (1 — 2z)(1 + z) has zeros at © = 1 and z = 1, and by partial
fractions we can write
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so A+ B=1, A—2B=0,ie. A=3 B=
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From geometric series we know that

2 - n n 1 _OO n n
1_2x:nz%2.2.$, 1+w_2(_1) 2"
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n=0
By comparing coefficients, we conclude that

_ 2n+1 + (_l)n

Forexample,boz%:1,b1:45—1:1,5)2:8—;1:3,1732%:5,%@.
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Problem 2. For any integer k£ > 2, let

q= 5 :
Prove that g(k) > 2¥ + ¢ — 2, i.e. there exists a positive integer which cannot be written as
the sum of 2¥ + ¢ — 3 nonnegative kth powers. (Hint: consider the number N = ¢2% — 1.)

Solution. First, observe that by definition 0 < (%)k —q < 1,s0if N = ¢2¥ — 1 then

3= N-1=2"((3)"~q) andso 0 <3~ N =1 <2 e 35 =2~ 1< N<3 -1

Choose a minimal representation of N as a sum of kth powers, i.e. N = a¥+---+a” with
a; > 0 such that there is no other representation of N as a sum of fewer than s nonnegative
kth powers. Since N < 3, none of the a; can be greater than or equal to 3, so all a; are
either 1 or 2 (if any were 0, we could drop them to get a smaller representation). Say that
there are o 1’s and 3 2’s, so
N = a + B2

Since this representation is minimal, it follows that a < 2%, since if there were 2* copies of
1% in the representation we could bundle them all together into a single 2*, thus reducing
the number of nonzero summands required. On the other hand since a = a + 32 = N =
q2F — 1 = —1 (mod 2%), we can write & = m2* — 1 for some integer m, so since o < 2% we
must have m =1, i.e. a =2F — 1, so

N = (B4 1)2" -1,

so B = g — 1. This tells us that our representation must consist of ¢ — 1 copies of 2¥ and
2% — 1 copies of 1¥ = 1, for a total of ¢ — 1 +2F — 1 = 2¥ + ¢ — 2 terms, so the smallest
possible value of s such that this N can be written as a sum of s nonnegative kth powers is
28 4 q —2. Thus g(k) > 2F 4+ ¢ — 2.



We can compute that for k =2, g = 2; for k =3, ¢ = 3; and for k =4, ¢ = 5. Thus we
deduce g(2) > 22+2—-2=4,¢9(3) >22+3—-2=9, and g(4) > 2* +5 — 2 = 19. These are
all actually equal to the true values, as we’ve seen in the k = 2 and k£ = 3 cases. One might
conjecture that for all k£ one in fact has

glk) =2 +g—2=2"+ Kg)lﬁzJ -2,

and this is believed to be true for all k; it is known that there are only finitely many
exceptions, and that they must be for k£ > 471600000.

Problem 3. For any integer k£ > 2, show that the number of integers less than or equal
to x that can be written as the sum of k nonnegative kth powers is at most 5 + O(:cl_%).
(Hint: if n < x is the sum of k nonnegative kth powers n = a¥ + --- + af, then (ordering
the a; increasing) we can associate to this representation a tuple of integers 0 < a; < --- <
ar < n'/* < 2% and the number of such tuples is given by a binomial coefficient.)

Using this bound, conclude that G(k) > k+ 1 for all k£ > 2, i.e. there are infinitely many
positive integers which cannot be written as a sum of £ nonnegative kth powers.

Solution. By the hint, finding a representation of n as a sum of k nonnegative kth powers
gives numbers 0 < a; < -+ < ap < nt/k < g1k, Choosing such numbers is equivalent to
choosing k elements out of the first #'/* integers; there are (LII/ZJH) ways of making this

choice, and so there are at most (Lxl/:Hl) integers less than or equal to x which can be
represented in this way. We have

(n)_ n! n-(n—1)--(n—k+1) n*F4+0Mn1) nk

_ _ _ k—1
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SO (Lxl/:prl) _ W +O(([="*] + 1)1y = £ 4 O(z'~%), since |2¥/*] +1 = 2+ O(1);
therefore the first part of the result follows.

To conclude, since k > 2 we have k! > 2! = 2, so there are at most §+O(x1_1/k) integers
which cannot be written in this form, which means there are z—£+O(z'~'/*) = 24 0(2'~1/F)
integers which cannot be written in this form; since the main term has higher order than
the error term, this goes to infinity as x — 00, so there are infinitely many such integers,
so it cannot be true that G(k) < k, i.e. G(k) > k+ 1. Note that in the case k = 3, this
immediately gives G(3) > 4, which is already the best known lower bound, recovering a
result from Keila’s talk.



