Local Noether-Lefschetz loci in characteristic 0

Andres Fernandez Herrero

December 2023

This note is based on a conversation with Mirko Mauri. Thanks to Siqing Zhang for useful comments.

Let $\pi : X \to S$ be a smooth projective morphism of Noetherian Q-schemes (i.e. in characteristic 0). Suppose that the fibers of π are geometrically irreducible.

Under these assumptions, the Picard functor is represented by a group scheme $\operatorname{Pic}_{\pi} \to S$ locally of finite type over S [BLR90, Thm.3].

Proposition 1. There is an open subgroup scheme $\operatorname{Pic}_{\pi}^{0} \subset \operatorname{Pic}_{\pi}$ such that the structure morphism $\operatorname{Pic}_{\pi}^{0} \to S$ is proper and has geometrically connected fibers. Furthermore, if S is reduced, then $\operatorname{Pic}_{\pi}^{0}$ is smooth over S.

Proof. By our assumptions that the characteristic is 0, each S-fiber of Pic_π → S is smooth by Cartier's theorem [Sta23, Tag 047N]. Furthermore, by standard deformation theory of line bundles, for any point $s \in S$ with residue field $\kappa(s)$, the dimension of the fiber (Pic_{π}) is given by the dimension of $H^1(\mathcal{O}_{X_s})$ as a $\kappa(s)$ vector space. The dimension of $H^1(\mathcal{O}_{X_s})$ is known to be locally constant in S [Del68, Thm. 5.5]. Therefore, the existence of Pic⁰_π and the smoothness when S follows from [GP11, Exp. VIB, Cor. 4.4]. The properness follows from [BLR90, Thm.3+Thm.4(c)]. We are left to show smoothness. Since the S-fibers of Pic⁰_π are connected and the smooth locus of a group scheme is open and closed, it suffices to show that Pic⁰_π → S is smooth at every point of the identity section. By [GP11, Exp.VIB, Prop 1.6], it suffices to show that the conormal bundle $e^*(\Omega^1_{\text{Pic}^0_{\pi}/S})$ of the unit section $e: S \to \text{Pic}^0_{\pi}$ is locally free. By deformation theory of line bundles, we have an identification $e^*(\Omega^1_{\text{Pic}^0_{\pi}/S}) \cong R^1\pi_*(\mathcal{O}_X)$. It follows again from [Del68, Thm. 5.5] that $R^1\pi_*(\mathcal{O}_X)$ is a locally free sheaf, as desired.

In the following proposition, we describe the connected components of Pic_{π} étale locally on S.

Proposition 2. Suppose that S is the spectrum a strictly Henselian local ring. Let $\operatorname{Pic}_{\pi} = \bigsqcup_{i \in I} \operatorname{Pic}_{\pi}^{i}$ denote the decomposition of Pic_{π} into connected components. Then, for each $i \in I$ there exists a closed subscheme $Z_i \subset S$ such that the connected component $\operatorname{Pic}_{\pi}^{i}$ is a $\operatorname{Pic}_{\pi}^{0}|_{Z_i}$ -torsor over Z_i . In particular, $\operatorname{Pic}_{\pi}^{i}$ is smooth over Z_i . *Proof.* By 1, there is a proper open group subscheme $\operatorname{Pic}_{\pi}^{0}$ that is smooth over S. Choose a π -ample line bundle $\mathcal{O}_{X}(1)$ on X. The scheme Pic_{π} breaks as a disjoint union of open and closed projective subschemes, determined by the Hilbert polynomial with respect to $\mathcal{O}_{X}(1)$. Therefore, each connected component $\operatorname{Pic}_{\pi}^{i}$ is of finite type. Since the fibers of $\operatorname{Pic}_{\pi}^{0} \to S$ are geometrically connected, the left multiplication action of $\operatorname{Pic}_{\pi}^{0}$ on Pic_{π} preserves $\operatorname{Pic}_{\pi}^{i}$, and so it induces an action morphism $\operatorname{Pic}_{\pi}^{0} \times_{S} \operatorname{Pic}_{\pi}^{i} \to \operatorname{Pic}_{\pi}^{i}$. The morphism

$$\operatorname{Pic}^{0}_{\pi} \times_{S} \operatorname{Pic}^{i}_{\pi} \to \operatorname{Pic}^{i}_{\pi} \times_{S} \operatorname{Pic}^{i}_{\pi}, \quad (g, x) \mapsto (g \cdot x, x)$$

is a monomorphism of proper S-schemes, and so it is a closed immersion [Sta23, Tag 04XV]. Therefore, the quotient $\operatorname{Pic}_{\pi}^{i} / \operatorname{Pic}_{\pi}^{0}$ is a separated algebraic space of finite type over S (here we may take the quotient because $\operatorname{Pic}_{\pi}^{0} \to S$ is a smooth group scheme). Furthermore, $\operatorname{Pic}_{\pi}^{i} / \operatorname{Pic}_{\pi}^{0}$ is connected and S-proper, because $\operatorname{Pic}_{\pi}^{i}$ is connected and S-proper, because $\operatorname{Pic}_{\pi}^{i}$ is a subscheme of the étale group $\operatorname{Pic}_{\pi})_{s} / \operatorname{Pic}_{\pi}^{0})_{s}$ of connected components of the smooth group scheme $(\operatorname{Pic}_{\pi}^{0})_{s}$, and so it is unramified. Therefore, $\operatorname{Pic}_{\pi}^{i} / \operatorname{Pic}_{\pi}^{0} \to S$ is a scheme by [Sta23, Tag 03XX]. By combining the étale local structure of finite unramified morphisms [Sta23, Tag 04HJ], the connectedness of $\operatorname{Pic}_{\pi}^{i} / \operatorname{Pic}_{\pi}^{0} \to S$ is a closed immersion. By construction $\operatorname{Pic}_{\pi}^{i}$ is a $\operatorname{Pic}_{\pi}^{0}|_{Z_{i}}$ -torsors over Z_{i} , as desired. \Box

We may call the subschemes $Z_i \subset S$ the local Noether-Lefchsetz loci. They are the closed subschemes where the Neron-Severi group of the local family $X \to S$ jumps.

Remark 3. The number of Z_i might very well be infinite. One may see this, for example, for families of projective K3-surfaces.

Remark 4. In the case where $X \to S$ is a miniversal projective family of Hyperhkähler manifolds, then the closed subsets Z_i are the preimages of linear subspaces on the period domain. Therefore they are regular. It would be interesting to find a miniversal family of smooth projective varieties where one of the Z_i is singular.

References

- [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron models, volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1990.
- [Del68] P. Deligne. Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes Études Sci. Publ. Math., (35):259–278, 1968.
- [GP11] Philippe Gille and Patrick Polo, editors. Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes, volume 7 of Documents Mathématiques (Paris) [Mathematical Documents (Paris)]. Société Mathématique de France, Paris, annotated edition, 2011. Séminaire de Géométrie Algébrique du Bois Marie 1962– 64. [Algebraic Geometry Seminar of Bois Marie 1962–64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre.

[Sta23] The Stacks Project Authors. *Stacks Project.* https://stacks.math.columbia.edu, 2023.