Dear Andres I. N.,
I am writing to include some of the things that we discussed today, so that I don't forget.

The main thing that we were left with was the following. Everything is Noetherian, I always assume diagonals are quasicompact.

Proposition 0.1. Let $\mathfrak{X} \rightarrow S$ and $\mathfrak{Y} \rightarrow S$ be (algebraic stack) gerbes over an algebraic space S. Suppose that \mathfrak{Y} has relative affine diagonal. If $\pi: \mathfrak{X} \rightarrow \mathfrak{Y}$ is a good moduli space morphism, then π is also a gerbe.

Proof. By Sta22, Tag 06QH], there is an fffp morphism $U \rightarrow S$ of schemes and an fppf U-group algebraic space G such that the stack $B_{U} G:=U / G$ fits into a cartesian diagram

A similar statement holds for \mathfrak{Y} for some ffp cover $V \rightarrow S$. By taking the common refinement $U \times_{S} V \rightarrow S$, we can assume that $V=U$. Since we can check that $\mathfrak{X} \rightarrow \mathfrak{Y}$ is a gerbe fppf locally on the base S [Sta22, Tag 06 QF$]$, and since good moduli spaces are preserved by base-change of base algebraic spaces, we can replace S by U and assume that $\mathfrak{X} \cong B_{U} G$ and $\mathfrak{Y} \cong B_{U} H$ for some fppf U-group algerbraic spaces G and H.

The morphism $B_{U} G \rightarrow B_{U} H$ corresponds to a homomorphism of U-groups schemes $\varphi: G \rightarrow H$. By Lemma 0.4 , it suffices to show that the morphism $G \rightarrow H$ is surjective and flat. By the fiberwise criterion for flatness Sta22, Tag 039E], this can be checked on geometric fibers of U, and so we can assume without loss of generality that $U=\operatorname{Spec}(k)$ for some algebraically closed field k. In that case G, H are algebraic groups of finite type over k. Let $K \subset G$ denote the kernel of the homomorphism $G \rightarrow H$. Then we can factor $G \rightarrow G / K \hookrightarrow H$. We want to show that $G / K=H$. We can factor

$$
B G \rightarrow B(G / K) \rightarrow B H
$$

The first morphism $B G \rightarrow B(G / K)$ is a gerbe by Lemma 0.4, and the relative automorphisms of the unique k-point are isomorphic to K. We can base-change the morphisms $B G \rightarrow B(G / K) \rightarrow B H$ by the tivial flat cover $\operatorname{Spec}(k) \rightarrow B H$ in order to obtain $H / G \rightarrow H /(G / K) \rightarrow \operatorname{Spec}(k)$, where $H / G \rightarrow H /(G / K)$ is a gerbe and $H /(G / K)$ is a scheme. The automorphisms of any k-point in H / G are isomorphic to K. Since $H / G \rightarrow \operatorname{Spec}(k)$ is a good moduli space, we conclude that K is linearly reductive. Therefore the gerbe $H / G \rightarrow H /(G / K)$ is also a good moduli space. By uniqueness of good moduli spaces, we conclude that $H /(G / K) \cong \operatorname{Spec}(k)$, which implies that $H=G / K$, as desired.

Remark 0.2. Instead of using algebraic spaces, we can use the left cancellation property of good moduli space morphisms. Let $\mathfrak{X} \rightarrow \mathfrak{Y} \rightarrow \mathfrak{Z}$ be morphisms of algebraic stacks.

If both $\mathfrak{X} \rightarrow \mathfrak{Y}$ and $\mathfrak{X} \rightarrow \mathfrak{Z}$ are good moduli space morphisms, then $\mathfrak{Y} \rightarrow \mathfrak{Z}$ is a good moduli space morphism. This implies in the argument above that $H /(G / K) \rightarrow \operatorname{Spec}(k)$ is a good moduli space morphism, which necessarily means that $H /(G / K) \cong \operatorname{Spec}(k)$, because cohomologically affine morphisms of schemes are affine.

Remark 0.3. The proposition is not true if we don't require the diagonal of \mathfrak{Y} to be affine. For example let k be a field, and let A be an abelian variety over k. Then the morphism $\operatorname{Spec}(k) \rightarrow B A$ is a good moduli space morphism, but it is not a gerbe.

Lemma 0.4. Let $\varphi: G \rightarrow H$ be a homomorphism of flat finitely presented groups schemes over some scheme U. Then the corresponding morphism $B_{U} G \rightarrow B_{U} H$ is a gerbe if and only if φ is flat and surjective.

Proof. Suppose first that $\varphi: G \rightarrow H$ is flat and surjective. Let K denote the kernel of φ, so that $K \hookrightarrow G$ is a locally closed subgroup scheme. The cartesian diagram

shows that $K \times G \rightarrow G$ is flat. Since $G \rightarrow U$ is flat, it follows that $K \rightarrow U$ is a flat group scheme. In particular, the algebraic space quotient G / K makes sense (it is the fppf sheafification of the naive quotient functor). Moreover, since $K \hookrightarrow G$ is a normal subgroup scheme and G is U-flat, it follows that G / K is a U-flat group algebraic space. The K-invariant morphism $G \rightarrow H$ induces a homomorphism $G / K \rightarrow H$. After base-changing via the flat $G \rightarrow H$, this becomes an isomorphism $G \xrightarrow{\sim} G$, and so $G / K \cong H$. Now, after base-changing by the trivial flat cover $U \rightarrow B_{U} H$, the morphism $B_{U} G \rightarrow B_{U}(G / K) \cong B_{U} H$ becomes the gerbe $B_{U} K \rightarrow U$. Therefore, by Sta22, Tag $06 \mathrm{QF}]$, it follows that $B_{U} G \rightarrow B_{U} H$ is a gerbe.

Conversely, suppose that $B_{U} G \rightarrow B_{U} H$ is a gerbe. We want to check that $\varphi: G \rightarrow H$ is flat and surjective. (Thank you for suggesting the following diagram) Consider the fiber product diagram

The stack $B_{U} G \times_{B_{U} H} B_{U} G$ classifies triples ($\mathcal{P}_{1}, \mathcal{P}_{2}, \psi$), where $\mathcal{P}_{1}, \mathcal{P}_{2}$ are G-bundles and ψ is an isomorphism between the corresponding associated H-bundles. The morphism $\nu: H \rightarrow B_{U} G \times_{B_{U} H} B_{U} G$ corresponds to the two trivial G-bundles $\mathcal{P}_{1}, \mathcal{P}_{2}$ on H, and the isomorphism of the corresponding trivial associated H-bundles given by the universal point $\psi \in H(H)$ determined by the identity morphism $H \rightarrow H$. Since $B_{U} G \rightarrow B_{U} H$ is a gerbe, the relative diagonal $\Delta: B_{U} G \rightarrow B_{U} G \times_{B_{U} H} b_{U} G$ is flat and surjective [Sta22, Tag 0CPS]. By the Cartesian diagram above, it follows that $G \rightarrow H$ is flat and surjective, as desired.

Remark 0.5. (Alternative old argument for the fact that $B_{U} G \rightarrow B_{U} H$ is a gerbe \Longrightarrow $G \rightarrow H$ flat and surjective.)

Suppose that $B_{U} G \rightarrow B_{U} H$ is a gerbe. We want to check that $\varphi: G \rightarrow H$ is flat and surjective. By the fiberwise criterion for flatness [Sta22, Tag 039E], we can check this over geometric points of U, and so we can assume without loss of generality that $U=\operatorname{Spec}(k)$ for an algebraically closed field k. Then we can factor $G \rightarrow G / K \hookrightarrow H$, where K is the kernel of φ. We want to show that $G / K=H$. Factor $B G \rightarrow B(G / K) \rightarrow B H$. By base-changing to the trivial flat cover $\operatorname{Spec}(k) \rightarrow B H$, we obtain the diagram $H / G \xrightarrow{p} H /(G / K) \xrightarrow{q} \operatorname{Spec}(k)$. Here $H / G \rightarrow \operatorname{Spec}(k)$ is a gerbe by assumption, and $H / G \rightarrow H /(G / K)$ can be plainly seen to be a gerbe (alternatively use the converse direction). Therefore both are universal homeomorphisms, and we have $p_{*}\left(\mathcal{O}_{H / G}\right)=\mathcal{O}_{H /(G / K)}$ and $(q \circ p)_{*}\left(\mathcal{O}_{H / G}\right)=k$. It follows that the representable morphism $H /(G / K) \rightarrow \operatorname{Spec}(k)$ is a universal homeomorphism. This implies that $H /(G / K) \xrightarrow{q} \operatorname{Spec}(k)$ is affine (the scheme $H /(G / K)$ must consist of a single point!). We also have that $q_{*}\left(\mathcal{O}_{H /(G / K)}\right)=q_{*}\left(p_{*}\left(\mathcal{O}_{H / G}\right)\right)=k$, and so the affine morphism $H /(G / K) \xrightarrow{q} \operatorname{Spec}(k)$ must be an isomorphism, as desired.

Best regards,
Andres

References

[Sta22] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2022.

