September 2, 2022

Dear Andres I. N.,

I am writing to include some of the things that we discussed today, so that I don't forget.

The main thing that we were left with was the following. Everything is Noetherian, I always assume diagonals are quasicompact.

Proposition 0.1. Let $\mathfrak{X} \to S$ and $\mathfrak{Y} \to S$ be (algebraic stack) gerbes over an algebraic space S. Suppose that \mathfrak{Y} has relative affine diagonal. If $\pi : \mathfrak{X} \to \mathfrak{Y}$ is a good moduli space morphism, then π is also a gerbe.

Proof. By [Sta22, Tag 06QH], there is an fffp morphism $U \to S$ of schemes and an fppf U-group algebraic space G such that the stack $B_UG := U/G$ fits into a cartesian diagram

A similar statement holds for \mathfrak{Y} for some ffp cover $V \to S$. By taking the common refinement $U \times_S V \to S$, we can assume that V = U. Since we can check that $\mathfrak{X} \to \mathfrak{Y}$ is a gerbe fppf locally on the base S [Sta22, Tag 06QF], and since good moduli spaces are preserved by base-change of base algebraic spaces, we can replace S by U and assume that $\mathfrak{X} \cong B_U G$ and $\mathfrak{Y} \cong B_U H$ for some fppf U-group algebraic spaces G and H.

The morphism $B_U G \to B_U H$ corresponds to a homomorphism of U-groups schemes $\varphi: G \to H$. By Lemma 0.4, it suffices to show that the morphism $G \to H$ is surjective and flat. By the fiberwise criterion for flatness [Sta22, Tag 039E], this can be checked on geometric fibers of U, and so we can assume without loss of generality that U = Spec(k) for some algebraically closed field k. In that case G, H are algebraic groups of finite type over k. Let $K \subset G$ denote the kernel of the homomorphism $G \to H$. Then we can factor $G \to G/K \hookrightarrow H$. We want to show that G/K = H. We can factor

$$BG \to B(G/K) \to BH$$

The first morphism $BG \to B(G/K)$ is a gerbe by Lemma 0.4, and the relative automorphisms of the unique k-point are isomorphic to K. We can base-change the morphisms $BG \to B(G/K) \to BH$ by the tivial flat cover $Spec(k) \to BH$ in order to obtain $H/G \to H/(G/K) \to Spec(k)$, where $H/G \to H/(G/K)$ is a gerbe and H/(G/K) is a scheme. The automorphisms of any k-point in H/G are isomorphic to K. Since $H/G \to Spec(k)$ is a good moduli space, we conclude that K is linearly reductive. Therefore the gerbe $H/G \to H/(G/K)$ is also a good moduli space. By uniqueness of good moduli spaces, we conclude that $H/(G/K) \cong Spec(k)$, which implies that H = G/K, as desired.

Remark 0.2. Instead of using algebraic spaces, we can use the left cancellation property of good moduli space morphisms. Let $\mathfrak{X} \to \mathfrak{Y} \to \mathfrak{Z}$ be morphisms of algebraic stacks.

If both $\mathfrak{X} \to \mathfrak{Y}$ and $\mathfrak{X} \to \mathfrak{Z}$ are good moduli space morphisms, then $\mathfrak{Y} \to \mathfrak{Z}$ is a good moduli space morphism. This implies in the argument above that $H/(G/K) \to Spec(k)$ is a good moduli space morphism, which necessarily means that $H/(G/K) \cong Spec(k)$, because cohomologically affine morphisms of schemes are affine.

Remark 0.3. The proposition is not true if we don't require the diagonal of \mathfrak{Y} to be affine. For example let k be a field, and let A be an abelian variety over k. Then the morphism $Spec(k) \rightarrow BA$ is a good moduli space morphism, but it is not a gerbe.

Lemma 0.4. Let $\varphi : G \to H$ be a homomorphism of flat finitely presented groups schemes over some scheme U. Then the corresponding morphism $B_UG \to B_UH$ is a gerbe if and only if φ is flat and surjective.

Proof. Suppose first that $\varphi : G \to H$ is flat and surjective. Let K denote the kernel of φ , so that $K \hookrightarrow G$ is a locally closed subgroup scheme. The cartesian diagram

shows that $K \times G \to G$ is flat. Since $G \to U$ is flat, it follows that $K \to U$ is a flat group scheme. In particular, the algebraic space quotient G/K makes sense (it is the fppf sheafification of the naive quotient functor). Moreover, since $K \hookrightarrow G$ is a normal subgroup scheme and G is U-flat, it follows that G/K is a U-flat group algebraic space. The K-invariant morphism $G \to H$ induces a homomorphism $G/K \to H$. After base-changing via the flat $G \to H$, this becomes an isomorphism $G \xrightarrow{\sim} G$, and so $G/K \cong H$. Now, after base-changing by the trivial flat cover $U \to B_U H$, the morphism $B_U G \to B_U(G/K) \cong B_U H$ becomes the gerbe $B_U K \to U$. Therefore, by [Sta22, Tag 06QF], it follows that $B_U G \to B_U H$ is a gerbe.

Conversely, suppose that $B_U G \to B_U H$ is a gerbe. We want to check that $\varphi : G \to H$ is flat and surjective. (Thank you for suggesting the following diagram) Consider the fiber product diagram

The stack $B_UG \times_{B_UH} B_UG$ classifies triples $(\mathcal{P}_1, \mathcal{P}_2, \psi)$, where $\mathcal{P}_1, \mathcal{P}_2$ are *G*-bundles and ψ is an isomorphism between the corresponding associated *H*-bundles. The morphism $\nu : H \to B_UG \times_{B_UH} B_UG$ corresponds to the two trivial *G*-bundles $\mathcal{P}_1, \mathcal{P}_2$ on *H*, and the isomorphism of the corresponding trivial associated *H*-bundles given by the universal point $\psi \in H(H)$ determined by the identity morphism $H \to H$. Since $B_UG \to B_UH$ is a gerbe, the relative diagonal $\Delta : B_UG \to B_UG \times_{B_UH} b_UG$ is flat and surjective [Sta22, Tag 0CPS]. By the Cartesian diagram above, it follows that $G \to H$ is flat and surjective, as desired. \Box

Remark 0.5. (Alternative old argument for the fact that $B_UG \to B_UH$ is a gerbe \Longrightarrow $G \to H$ flat and surjective.)

Suppose that $B_UG \to B_UH$ is a gerbe. We want to check that $\varphi : G \to H$ is flat and surjective. By the fiberwise criterion for flatness [Sta22, Tag 039E], we can check this over geometric points of U, and so we can assume without loss of generality that $U = \operatorname{Spec}(k)$ for an algebraically closed field k. Then we can factor $G \to G/K \hookrightarrow H$, where K is the kernel of φ . We want to show that G/K = H. Factor $BG \to B(G/K) \to BH$. By base-changing to the trivial flat cover $\operatorname{Spec}(k) \to BH$, we obtain the diagram $H/G \xrightarrow{p} H/(G/K) \xrightarrow{q} \operatorname{Spec}(k)$. Here $H/G \to \operatorname{Spec}(k)$ is a gerbe by assumption, and $H/G \to H/(G/K)$ can be plainly seen to be a gerbe (alternatively use the converse direction). Therefore both are universal homeomorphisms, and we have $p_*(\mathcal{O}_{H/G}) = \mathcal{O}_{H/(G/K)}$ and $(q \circ p)_*(\mathcal{O}_{H/G}) = k$. It follows that the representable morphism $H/(G/K) \to \operatorname{Spec}(k)$ is a fline (the scheme H/(G/K) must consist of a single point!). We also have that $q_*(\mathcal{O}_{H/(G/K)}) = q_*(p_*(\mathcal{O}_{H/G})) = k$, and so the affine morphism $H/(G/K) \xrightarrow{q} \operatorname{Spec}(k)$ must be an isomorphism, as desired.

Best regards, Andres

References

[Sta22] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2022.