November 28, 2022

Dear Andres I. N.,

I am sketching the proof we discussed so that I have it on record.

Proposition 0.1. Let S be a locally Noetherian reduced scheme. Let $H \to G$ be an isomorphism of affine group schemes over S. Suppose that $H \cong \mathbb{G}_m^h$ for some integer $h \ge 0$. Then, the kernel of φ is flat over S, and is a diagonalizable groups scheme over S.

Proof. By the valuative criterion for flatness, we can reduce to the case when the base is a Spec(R) for a discrete valuation ring R. The group H acts on H by translation (using the homomorphism φ). More concretely, t the level of rings, we have that $R[G] \to R[H]$ is a morphism of graded rings (graded by the free group $X^*(H)$ of characters of H). Let Z be the scheme theoretic image of $\mathbb{H} \to G$. This also acquires an action of H (the coordinate ring of Z is the image of R[G] inside R[H].

Let S be a ring over R, and let $p: Spec(S) \to H$ be an S-point of H. Then p is an S-point of the kernel iff it acts trivially on the H_S module $R[Z] \otimes_R S$. This follows by tracing definitions, because the Z contains the identity section of G, and the S-point is trivial iff it fixes the identity section.

Crucial point: The coordinate ring R[Z] is a free R module! First R[Z] is projective because it is contained in the free R-module R[H], and R is a hereditary ring. This implies that R[Z] is free, because every projective module over a local ring is free.

Decompose $R[Z] = \bigoplus_{\chi \in X^*(H)} R[Z]_{\chi}$ in terms of *H*-weights. Each graded piece $R[Z]_{\chi}$ is also a free *R*-module. So for any *R*-algebra *S*, the *H_S*-weights appearing in the decomposition of $R[Z] \otimes_R S$ remain always the same, they are just the set of weights χ such that $R[Z]_{\chi} \neq 0$.

A moment of thought shows then that the kernel is isomorphic to the intersection $\bigcap_{\chi \text{st}R[Z]_{\chi}\neq 0} \text{Ker}(\chi)$ of the kernels of the weights appearing in R[Z]. You can replace this possibly infinite set of weights with a set of generators of the subgroup $\Sigma \subset X^*(H)$ spanned by them. Then the intersections of the kernels is obviously flat, as desired. \Box

Remark 0.2. You mentioned that Dan showed that the weights spaces of the pointwise kernels of any morphism $\mathbb{G}_m^h \to G$ are locally constant, where G is an arbitrary group scheme of finite type. I think that this might show that the same result holds true keeping the assumption that the base S is reduced, but removing the assumption on the affiness of G.

Remark 0.3. As I outlined during our conversation, the flatness of the kernel holds over any base (possibly nonreduced) if G admits a monomorphims to $GL_n \times S$ for some n.

Question: It is natural to wonder whether this might hold more generally removing the reducedness conditions of S. I thought for a bit and did not get a counterexample. But there could very well be a simple one.

Best regards,

Andres