Hartogs's property for BG

Andres Fernandez Herrero

November 2022

Proposition 1 (Hartogs property). Let G be an affine smooth geometrically reductive group scheme over Noetherian base scheme S. Let Y be a regular scheme equipped with a morphism to S, and let $U \subset Y$ be an open subscheme of Y such that every point of the complement has codimension 2 in Y. Then, for any morphism $f: U \to BG$ there is an extension $\tilde{f}: Y \to BG$ that is unique up to unique isomorphism.

Proof. The uniqueness follows directly from the fact that BG has affine diagonal and the usual version of Hartogs's theorem for maps into affine schemes. By [Con14, Prop. 3.1.3] we have an exact sequence of group schemes

$$1 \to G_0 \xrightarrow{i} G \xrightarrow{q} \pi_0(G) \to 1,$$

where G_0 is reductive with connected fibers and $\pi_0(G)$ is finite étale [Alp14, Thm. 9.7.6]. By uniqueness and étale descent, it suffices to check the existence of \tilde{f} étale locally on S, and so we can assume that the neutral component G_0 is split reductive and $\pi_0(G)$ is a constant group scheme over S.

Suppose first that $G = G_0$. In this case G can be embedded as a closed subgroup $G \hookrightarrow (\operatorname{GL}_n)_S$ for some n > 0. By [Alp14, Th. 9.4.1] the quotient $(\operatorname{GL}_n)_S/G$ is affine, and so it follows that the morphism $BG \to B(\operatorname{GL}_n)_S$ is affine. By using Hartogs's theorem for maps into affine schemes, we are reduced to the case when $G = (\operatorname{GL}_n)_S$. In this case $f: U \to B(\operatorname{GL}_n)_S$ corresponds to a rank n vector bundle \mathcal{E} on U, and we can extend to a vector bundle $\widetilde{\mathcal{E}}$ on Y by setting $\widetilde{\mathcal{E}} = (j_*\mathcal{E})^{\vee\vee}$, where $j: U \hookrightarrow Y$ is the open immersion [Sta23, Tag 0B3N].

Now we proceed to prove the lemma for a general G. Consider the composition $g: U \to BG \to B\pi_0(G)$, corresponding to a finite étale $\pi_0(G)$ -torsor $F \to U$. The morphism g admits an extension $\tilde{g}: Y \to B\pi_0(G)$, by Zariski-Nagata purity ([Sta23, Tag 0BMA] + [Sta23, Tag 0EY7]) and using [Sta23, Tag 0BQG] to extend the $\pi_0(G)$ -action. Let $p: \tilde{F} \to Y$ denote the finite étale torsor corresponding to $\tilde{g}: Y \to B\pi_0(G)$, and set $V = p^{-1}(U)$ to be the inverse image of U in \tilde{F} . We denote by a E_V the G-bundle on V corresponding to the composition $V \to U \to BG$. By construction, the pullback $p^*(\tilde{F})$ of the torsor is canonically trivialized. In particular, the associated $\pi_0(G)$ -bundle $q_*(E_V)$ is trivialized, and so we can view E_V as a G_0 -bundle on V. By the result for G_0 , we can extend this to a G_0 -bundle E on $\tilde{F} \supset V$, and the associated G-bundle $i_*(\tilde{E})$ yields an extension of E_V to \tilde{F} . By étale descent, in order to descent the G-bundle $i_*(\tilde{E})$ to Y we need to equip it with an equivariant structure for the Galois group of the cover $\Gamma = \pi_0(G)$. The set of such equivariant structures is in natural in bijection with sections of certain affine morphism $Z \to \tilde{F}$ (cf. the last paragraph in the proof of [HLH23, Prop. 7.6]). Since the restriction E_V comes as a pullback of a G-bundle on

U, we have a section $s: V \to Z$ defined on the open $V \subset \widetilde{F}$. By Hartogs's theorem for affine morphisms, this section extends uniquely to $\widetilde{s}: \widetilde{F} \to Z$, which allows us to descend the *G*-bundle $i_*(\widetilde{E})$ to get our desired extension $\widetilde{f}: Y \to BG$. \Box

Acknowledgement: I would like to thank Michael Groechenig for pointing out an inaccuracy in the first version of this note.

References

- [Alp14] Jarod Alper. Adequate moduli spaces and geometrically reductive group schemes. Algebr. Geom., 1(4):489–531, 2014.
- [Con14] Brian Conrad. Reductive group schemes. In <u>Autour des schémas en groupes.</u> <u>Vol. I</u>, volume 42/43 of <u>Panor. Synthèses</u>, pages 93–444. Soc. Math. France, <u>Paris</u>, 2014.
- [HLH23] Daniel Halpern-Leistner and Andres Fernandez Herrero. The structure of the moduli of gauged maps from a smooth curve. https://arxiv.org/abs/2305. 09632, 2023.
- [Sta23] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia. edu, 2023.