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Overview of the talk

1. Hyperkahler geometry

2. Feix—Kaledin metric and twisted cotangent bundles

3. When are twisted cotangent bundles Stein/affine?

4. Big and nef tangent bundles

Most results mentioned in the talk are contained in

[A.'21] A. Abasheva. Feix—Kaledin metric on the total spaces of cotangent bundles to Kahler

quotients, Int. Math. Res. Not., 2021, rnab047, https://doi.org/10.1093/imrn/rnab047,
arXiv:2007.05773
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The whole picture

The FK metric

(T*X)tw is
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holds for kq's

4) an afﬁne@%%
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for kq's v
The moment map (T*X)ew is
w
p: T*X = R TKLRgy’| 2 Stein manifold.
is proper. +A. 21

Greb, Wong'19

A. (not publ.)
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Complex structures on manifolds

Let V be a vector space, | € End(V), /> = —1 an almost complex structure. Consider the

eigenvalue decomposition
Ve C=Vvoevo!

Ix = V—1x for x € V0, Ix = —/~1x for x € V!

Consider a smooth manifold X equipped with an almost complex structure / € End( TX).
Then one has the decomposition

TX®@C=TYWXxgT0lx

Definition

An almost complex structure / on X is called integrable or just a complex structure if

[THOX, THOX] ¢ THOX
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Kahler manifolds

Let V be a vector space with a complex structure /. Let g be an Hermitian metric on V i.e.
a Euclidean metric on V s.t.

g(lv,lu) = g(v,u)
Then w(v,u) := g(lv,u) is a skew-symmetric 2-form. Let X be a complex manifold, g a
Hermitian metric on X, w(v, u) := g(lv, u).

Definition

A complex manifold X is called Kahler if dw = 0.

Examples of Kahler manifolds
1. CP", all smooth projective varieties X € CP",
2. Complex tori C"/A;

3. A complex submanifold of a Kahler manifold is Kahler.
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Hypercomplex manifolds

Notation: H is the quaternion algebra, it is generated by /, J, K,
I?=J)=K>=-1,l1J=—Jl =K.

An element L € H satisfies [?> = —1iff L = x| + yJ + zK, x> + y? + 2> = 1.

Definition

A manifold X is called almost hypercomplex if H acts on TX. It is called hypercomplex if
every complex structure on X induced from H is integrable.
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Hyperkahler manifolds

Definition

Let (X, g) be a hypercomplex manifold, g a metric on X which is Hermitian wrt /, J, K. Define
wr(x,y) = g(lx,y) for L=1,J,K. If dw, =0 for L=1,J,K then X is called hyperkahler.

Consider the 2-form Q := w; + v —1lwgk

Fact
The form € is holomorphic symplectic i.e. it is a closed non-degenerate holomorphic
(2,0)-form wrt the complex structure /.

| A

Remark
If X is compact then Kahler + holomorphic symplectic implies hyperkahler by Calabi—Yau.
If X is non-compact then Calabi—Yau does not work.

A\
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Twistor spaces

Let X be a hyperkdhler manifold. We are going to construct the twistor space Tw(X) of X.
Tw(X) = X x §2

as a real manifold. An (a priori almost) complex structure | on Tw(X) is

li,ty (v, u) := (lv, Icpru)

where I, is the complex structure corresponding to t € S? C H.

The almost complex structure / on Tw(X) is integrable.

There is a natural holomorphic map
Tw(X) = CPY  (x,t) >t
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Cotangent bundles

Let X be a complex manifold. Consider the total space T*X of the cotangent bundle to X,
m: T*X — X. The tautological holomorphic 1-form on T*X is defined as

Tx.a(V) = a(myv)

where x € X, a € T;X. Or in holomorphic coordinates (z!,...z2", w! := %, Wy = %) on
T*X

n
T = g w'dz'
i=1

Define

Q= —dr = zn:dzi A dw'

i=1

Q is a holomorphic symplectic form on T*X. It is called the standard holomorphic
symplectic form on T*X.




Feix—Kaledin theorem

T*X comes with the holomorphic action of U(1) C C* by fiberwise multiplications. This
action satisfies A*QQ = AQ, VA € U(1).

Theorem(B. Feix'01, D. Kaledin'99)

Let X be a K&hler manifold with a real analytic metric g. Then there exists a U(1)-invariant
neighbourhood of the zero section X C T*X and a hyperkahler metric (h,/,J,K) on T*X s.t.

® The corresponding holomorphic symplectic form Q := w; + v/—1lwg is the standard one.
® The action of U(1) preserves h and "rotates the complex structures” i.e.

Ll =0, LeJ=K, LeK=—J

where ¢ is the vector field tangent to the U(1)-action.

® The metric h restricts to the given Kahler metric on X embedded as the zero section.

Both existing proofs are non-trivial. 1020



Twisted cotangent bundles. Part 1

Let X be a complex manifold, V, W two vector bundles on X.

The isomorphism classes of short exact sequences of the form

0O—-V—-E—-W-=0

are classified by the group H(X, W* @ V)).

Assume that (X,w) is compact Kahler. Consider W = Ox, V = Qx. Then the extensions of
the form
0—-Qx & —-0x—0

are classified by H1(X,Qx) = HY!(X). There is the natural extension £ corresponding to
the Kahler class [w] € H1(X).
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Twisted cotangent bundles. Part 2

Consider the total space E of the vector bundle £ constructed in the previous slide as an
extension

0—-Qx €& —-0x—0

The complex manifold E comes together with the holomorphic map

P:E—-XxC—CcCP!

The fiber of P over 0 € Cis T*X.

Definition

The fiber of P over 1 € C is called the twisted cotangent bundle of X and is denoted by
(T*X)ew

12/29



Twisted cotangent bundles. Part 3

Theorem(Feix, Kaledin + A.'21)

Let X be a Kahler manifold. Assume that the Feix—Kaledin metric is defined on T*X. Let
P;: Tw(T*X) — CP! be the twistor projection. Then there exists an isomorphism
E = P }(C) s.t. the following diagram is commutative.

E —— Tw(X)

p| Al

C —— CP!

| \

Corollary

In the assumptions of the theorem above the twisted cotangent bundle (7*X)4, is isomorphic
to (T*X), as a complex manifold.
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Example: CP"

Consider the Euler exact sequence of vector bundles on P" = P(V') (the set of lines | C V).

0— Q]p(\/) — Op(\/)(—l) RV — Op(\/) —0
This short exact sequence is non-trivial and h1(P(V)) = 1 = E = Tot(Op(y)(—1) ® V*)

The fiber of E over [[] € P(V)is I® V* C V ® V* = End(V). We obtain a map

F: E— {A€End(V)| rkA<1}

The map F is a birational morphism and is an isomorphism outside of the zero section
P(V) C E. This map identifies (T*P(V))n, with the affine variety

{A€End(V) | tkA=1,trA=1}
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The moment for the U(1)-action

Assume that the Feix—Kaledin metric is defined on T*X. Let £ be the vector field tangent to

the U(1)-action. One can show that there exists a moment map p: T*X — R>q for the
U(1)-action i.e. the function s.t.

dp = —tew;

Fact (HKLR'87)
The function p is a Kahler potential on (T*X), i.e.

ddjp=wy, dj=JdJ
Proof:

ddj:u’ = dJdp = _dJ(wl(é.a _)) = _dw/(é.v-/_) = dh(£7 IJ_) = —dCUK(f, _) = —Lewk = wy )
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When (T*X)4y is Stein? Part 1

Definition

A complex manifold Y is called Stein if it is a complex submanifold of CV.

(solution to) Levi's problem

A complex manifold Y is Stein iff 3 a proper function p: Y — Rx>q s.t. dd“u is a Kahler form.

Corollary

Assume that the FK metric is defined on T*X. Suppose that the moment map
p: T*X — Rxq is proper. Then (T*X)4, is a Stein manifold.

Proof: According to the previous slide dd§u = w; is a Kahler form on (T*X),. By Levi's
problem (T*X), is Stein. The complex manifold (T*X)4, is isomorphic to (T*X),.
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When (T*X)4uy is Stein? Part 2

Open question

Assume that the FK metric on T*X exists and is complete. Does it follow that the moment
map p: T*X — Rxg is proper?

Remark 1

The question above has an affirmative answer when X is a Kahler quotient by [A.'21] (see
the next slide for the definition of a Kahler quotient).

Remark 2

Stein manifolds are affine. But there exists a smooth non-affine algebraic variety Y whose
analytification is Stein. In addition to that, such a manifold Y might be biholomorphic to
an affine variety. An example is given by (T*X)s, for X a torus (see f.e. [Greb, Wong'19]).

| \
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A digression on Kahler quotients

Let G be a connected compact Lie group acting holomorphically on a Kahler manifold (X, w).
Assume that G preserves w. Then V¢ € g

0=Lew = digw + 1gdw = drew
Suppose that 3 a G-equivariant smooth function p: X — g* s.t.

dpe = —tew,  pe(x) = (u(x), &)
Then p is called a moment map.

Theorem (Marsden—Weinstein)

The subset 1 ~1(t) is G-invariant for every t € g*. If t is a regular value of y: X — g* then
the quotient 1 ~1(t)/G is naturally a Kihler manifold.

Let X is be an Hermitian vector space, G — U(V/) a unitary representation. In this case
quotients .~ 1(t)/G are called Kéhler quotients. They include toric varieties, grassmanians,
moduli of hypersurfaces etc
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Big and nef vector bundles

Definition 1

Let L be a line bundle on a compact Kahler manifold X. It is called

* nef = numerically effective if c;(L) € HY1(X) N H2(X,Z) can be realized as a limit of
Kahler classes;

® big if h°(LY) = O(d") where n = dim X.

Ample line bundles can be defined as those for which ¢i(L) is a Kahler class. They are big
and nef. The opposite is not true.

Let V be a vector bundle on a Kdhler manifold X. Let P(V) denote the projectivization of V
(the set of hyperplanes in V). The manifold P(V) is equipped with the natural line bundle
Op(v)(1).
Definition 2
A vector bundle V is called big/nef/ample if Op(\(1) a big/nef/ample line bundle on P(V).

1729




From Feix—Kaledin metric towards Campana—Peternell

(a version of the) Campana—Peternell conjecture

Let X be a compact Kahler manifold whose tangent bundle TX is big and nef. Then X is a
complex homogeneous variety.

Remark

| A

In the assumptions of the conjecture above the manifold X is necessarily Fano (in particular,
projective).

Theorem (Greb,Wong'19)

Assume that (T*X)4, is affine. Then the vector bundle TX is big.

Theorem (Bielawski + A.'21)

Assume that the FK metric exists on T*X and is complete. Assume also that the moment
map p: T*X — R>g is proper. Then the vector bundle TX is nef.
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Nef tangent bundle 1

Theorem (Bielawski + A.'21)

Assume that the FK metric exists on T*X and is complete. Assume also that the moment
map p: T*X — R>q is proper. Then the vector bundle TX is nef.

A sketch of the proof: Step 1. Choose u: T*X — Rxq in such a way that X = ~1(0).
For any t > 0 one has the following diagram

Py "X\ {0}
pHB/U@) —— (TX\{0})/C* = B(TX)

One can show that the map p~1(t)/U(1) — P(TX) is an isomorphism of complex manifolds
Vt > 0. Thus we obtain a family w; of Kahler forms on P(TX) s.t. pfw: = tjwy.
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Nef tangent bundle 2

Theorem (Bielawski + A.'21)

Assume that the FK metric exists on T*X and is complete. Assume also that the moment
map p: T*X — R>q is proper. Then the vector bundle TX is nef.

Step 2. In [Pedersen, Poon'91] the authors study Kahler Ricci-flat manifolds with a
U(1)-action. It follows from their results that the forms w; on P(TX) satisfy the following
differential equation:

d
Cawt = Pt + ddcft

where C is a constant, p; is the Ricci form of w; and f;: P(TX) — R is a smooth family of
functions. In [Bielawski'02] the author proves that C = dim¢ X =: n. As [p¢] = a1 (P(TX)) we
obtain

d
na[wt] = a(P(TX))
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Nef tangent bundle 3

Theorem (Bielawski + A.'21)

Assume that the FK metric exists on T*X and is complete. Assume also that the moment
map p: T*X — R>q is proper. Then the vector bundle TX is nef.

Step 3: Let m: Z := P(X) — X denote the natural projection, n := dim X. By using the
relative Euler exact sequence for P(TX)

0—Qz/x -7 TX(~-1) >0z =0
and the short exact sequence
0—=7mQx = Qz = Qz/x =0
one can show that the canonical line bundle Kx of X is Kx = O(—n). Hence
ci(Z) = —a(Kx) = nc1(O(1)). From the previous step
a(0(1)) = %[wt] = lim o] = TXisnef M
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The case of Kahler quotients

Theorem (A.'21)

Let X be a Kahler quotient. Assume that the Feix—Kaledin metric on T*X is complete. Then
® The moment map p: T*X — R is proper.
® The twisted cotangent bundle (T*X)y, is affine (and not only Stein).
® The tangent bundle TX is big and nef.

Proof: For the first two assertions see [A.'21]. The fact that TX is nef follows form the first
one, while the fact that 7X is big follows from the second.

26 /29



What about the opposite direction?

Theorem (A., unpublished)

Let X be a projective manifold whose tangent bundle TX is nef and big. Then the twisted
cotangent bundle (T*X)y, is an affine variety.

Sketch of the proof: Step 1 Consider the extension 0 — Qx — E — Ox — 0. We compute
that KP(E*) = O]PJ(E*)(—I'I — 1)

Step 2: We use Kawamata—Shokurov theorem to conclude that (’)P(E*)(r) is generated by
global sections for r big enough.

Step 3: We can realize (T*X)s as the complement of the divisor D := P(TX) C P(E*).
Next, we show that (7*X), does not contain compact curves.

Step 4: Let D C Y be an effective divisor whose multiple is generated by global sections.

Assume that X \ D does not contain compact curves. Then X \ D is affine.
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Thanks for your attention! (A nice picture)

Al

\

Sir Hamilton, the discoverer of quaternions, shows the quaternionic relations to his wife.
29 /29



	Hyperkähler geometry
	Feix–Kaledin metric and twisted cotangent bundles
	When are twisted cotangent bundles Stein/affine?
	Big and nef tangent bundles

