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1 Wednesday, October 5

There are now two proofs of the P = W conjecture that appeared a few days apart.

1.1 Betti space

Let C be a a smooth projective curve over C. Considering it in the analytic topology, we
have

π1(C
an) = ⟨α1, β1, ..., αg, βg⟩/(

∏
[αi, βi] = 1)

Definition 1.1 (Betti space = character variety).

MB(n, 0) := Rep(n,C)//GLn(C)

It is a GIT quotient of Rep(n,C) := {ρ : π1(Can) → GLn(C)}.

Fact 1.2. MB(n, 0) is an affine variety.

Indeed, Rep(n,C) is an affine variety given as

{(A1, B1, ..., Ag, Bg) ∈ GLn(C)2g :
∏

[Ai, Bi] = 1}

and a GIT-quotient of an affine variety is affine.

Definition 1.3 (Twisted character variety).

Rep(n, ℓ, C) := {(A1, B1, ..., Ag, Bg) :
∏

[Ai, Bi] = µℓ}

where µ is a primitive n-th root of unity. The twisted character variety is MB(n, ℓ) :=
Rep(n, ℓ, C)//GLn(C).

Fact 1.4. MB(n, ℓ) is smooth iff (n, ℓ) = 1.

For n = 1, GL1 = C×, so

MB(n, 0) ≃ Hom(π1(C
an),C×) ≃ Hom(H1(C

an),C×) ≃ (C×)2g

1



1.2 De Rham space

Definition 1.5. • Let X/C be a complex manifold, E be a complex vector bundle on
X. A connection is a differential operator

∇ : C∞(E) → C∞(E ⊗ Ω1)

with the property that
∇(fs) = f∇s+ df ⊗ s

for a smooth function f and a section s.

• The curvature of ∇ is F∇ := ∇2 ∈ C∞(End E ⊗ Ω1).

• The connection is flat if F∇ = 0.

Theorem 1.6. There is a one to one correspondence between Rep(n,X), local systems on
Xan of rank n, and vector bundles on X with a flat connection.

Local systems yield a representation via the monodromy representation, and a local
system L yields a vector bundle L⊗C Oan

X with ∇(L⊗ 1) = 0.
Let E be a holomorphic vector bundle on X. One can define an operator

∂E : C∞(E) → C∞(E ⊗ Ω0,1)

as follows. If s1,...,sn a local basis of holomorphic sections of E then

∂E(
∑

fisi) :=
∑

∂fi ⊗ si

The operator ∂E satisfies ∂E(fs) = f∂Es+ ∂f ⊗ s and ∂
2

E = 0.

Theorem 1.7. Holomorphic vector bundles correspond to complex vector bundles with an
operator ∂ satisfying the above requirements.

Consider a connection

∇ : C∞ → C∞(E ⊗ Ω1) ≃ C∞(E ⊗ Ω1,0)⊕ C∞(E ⊗ Ω0,1)

The (0,1)-part ∇0,1 of ∇ is defined to be the composition of ∇ with the projection C∞(E ⊗
Ω1) → C∞(E ⊗ Ω0,1). The flatness of ∇ implies that (∇0,1)2 = 0. We thus obtain a
holomorphic structure on E and ∇ becomes a holomorphic connection. By definition, a
holomorphic connection ∇ on a holomorphic vector bundle E is a connection such that
∇0,1 = ∂E.

Fact 1.8. Let C be a projective curve. Complex vector bundles with a flat connection on
C are in one-to-one correspondence with holomorphic vector bundles E with a holomorphic
connection. In their turn, they are in one-to-one correspondence with algebraic vector bundles
with an algebraic connection (by GAGA).

Definition 1.9. The de Rham moduli space MdR(n) parametrizes algebraic vector bundles
on C with an algebraic connection.
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A twisted version also exists, which we use here:

Theorem 1.10. There exists a biholomorphism between MB(n, ℓ) and MdR(n, ℓ). This
biholomorphism is not algebraic.

Example. n = 1. A point in MdR(1) corresponds to a pair {L,D} with L a line bundle
and D a connection. By forgetting the connection, we get a map MdR(1) → Jac(C).

If ∇,∇′ are algebraic connections, then ∇′ −∇ ∈ H0(KC) is a holomorphic form. Con-
versely, a sum of a connection and a 1-form is again a connection. Hence MdR(1) is an affine
bundle over Jac(C).

Affine bundles over Ω1
Jac(C) correspond to elements in H1(Jac(C),Ω1

Jac(C)). The class of

MdR(1) is the class of theta divisor, which we will not prove. We have a biholomorphism

(C×)2g ≃ MdR(1)

It cannot preserve algebraic structures because (C×)2g does not admit a non-trivial map
to an abelian variety.

1.3 Dolbeault space

Definition 1.11. Let E be a vector bundle. A Higgs field is ψ ∈ End(E) ⊗ KC . A pair
(E,ψ) is called a Higgs bundle.

The pair (E,ψ) is (semi)-stable if for every ψ-stable sub-bundle F ⊂ E,

degF

rk F
≤ degE

rk E

(< for stable).

Theorem 1.12. There exists an algebraic variety MDol(n, d) called Dolbeault moduli space
parameterizing semi-stable Higgs bundles.

1. It’s quasi-projective

2. The subspace corresponding to stable bundles Ms
Dol(n, d) ⊂ MDol(n, d) is smooth and

Zariski open

3. If (n, d) = 1 then MDol(n, d) is smooth.

4. The moduli of semistable vector bundles embeds M(n, d) ↪→ MDol(n, d) as a subset of
Higgs bundles with a trivial Higgs field.

5. The variety T ∗M s(n, d) embeds into MDol(n, d) as a Zariski open dense. Indeed,

T[E]M(n, d) ≃ H1(C,End E) ≃ H0(End(E)⊗KC)
∗

6. There exists a holomorphic symplectic form on MDol(n, d) which is an extension of the
standard holomorphic symplectic form on T ∗M s(n, d).

3



Theorem 1.13 (Non-abelian Hodge correspondence). There exists a real analytic isomor-
phism

MDol(n, d) ≃ MdR(n, ℓ).

where d is a function of l. Moreover, the following holds.

• There exists a family π : MHdg(n, d) → A1 with π−1(0) ≃ MDol and π
−1(1) ≃ MdR;

• MHdg → A1 is a real analytically trivial deformation.

Hence we have isomorphisms of three moduli spaces

MDol
≃−−−→

diffeo
MdR(n, ℓ)

≃−−−→
biholo

MB(n, ℓ).

They give us isomorphisms of cohomology groups:

H•(MDol) ≃ H(MdR) ≃ H•(MB)

We will soon endow the leftmost group with a filtration called P -filtration, and the rightmost
one with W -filtration.

1.4 Perverse filtration

Let ψ ∈ End(E)⊗KC be a Higgs field. Send

ψ 7→ (Trψ,Tr ∧2 ψ, ...,Tr ∧n ψ)

where Tr ∧k ψ ∈ H0(K⊗n
C ). Locally ψ = φ ⊗ dz where φ ∈ End(E) and ψ is mapped to

(Trφ⊗ dz, ...Tr ∧n ⊗dz).

Definition 1.14. The Hitchin map is the map

MDol → An, (E,ψ) 7→ (Trψ, ...,Tr ∧n ψ)

Fact 1.15. The Hitchin map is a projective morphism. Moreover, it is a Lagrangian fibra-
tion. Hence a generic fiber is an abelian variety.

Theorem 1.16 (Deligne). For f : X → Y smooth proper morphism with X smooth there
exists a direct sum decomposition

Rf∗QX ≃
2d⊕
i=0

Rif∗Qx[−i]

Theorem 1.17 (BBDG). For f : X → Y proper with X smooth we have a decomposition

Rf∗QX [dimX] ≃
2d⊕
i=0

PHi(Rf∗QX [dimX])

where PHi are perverse cohomology groups (not defined today).
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It follows that there is a decomposition

H•(X,QX [dimX]) ≃
⊕

RΓ(PHi(Rf∗QX [dimX]))

Direct sum is not canonical, but the following filtration is:

Definition 1.18. Perverse filtration on H•(X,Q) is defined as

Pℓ(H
•(X,Q[dimX])) =

ℓ⊕
i=0

RΓ(PHi[dimX])

Theorem 1.19 (de Cataldo, Migliorini). Let f : X → Y be a proper map, X smooth, Y
affine. Embed Y into AN . Then

PℓH
K(X) = ker[HK(X) → HK(f−1AN−K+ℓ+1 ∩ Y )]

The Hitchin map h : MDol → AN induces a filtration PℓH
•(MDol) for (n, d) = 1.

Example. Let ψ ∈ H0(End(E) ⊗ KC) be a Higgs field. When n = rk E = 1 we have
ψ ∈ H0(KC). Hence

MDol = Jac(C)×H0(KC) ≃ T ∗Jac(C)

The Hitchin map is identified with the projection h : MDol → H0(KC) to the second factor.
The perverse filtration is trivial i.e.

PℓH
ℓ(MDol) = Hℓ(MDol)

Definition 1.20. A mixed Hodge structure is a Q-vector space VQ with two filtrations

• an increasing weight filtration W •VQ;

• a decreasing Hodge filtration F•VC;

such that GrWi VQ is a pure Hodge structure ∀i.

Theorem 1.21 (Deligne). • The cohomology H•(X) of an algebraic variety X has a
natural mixed Hodge structure.

• If X is smooth, weights on H i(X) are [i, ..., 2i]

• Let X ⊂ X be a compactification of X. Then

W iH i(X) = im(H i(X) → H i(X))

• MHS depends on an algebraic structure!

Example. Let us compute the MHS on the first cohomology of MB(1) = (C×)2g. First,
let us embed C× in P1. The previous theorem implies that W 1H1(C×) = im H1(P1) = 0.
Then W 2H1 = H2. The mixed Hodge structure on H1(C×) is pure of weight 2. Kunneth
formula implies that the same is true for H1(MB(1)).

Consider the projection MdR(1) → Jac(C). It induces an isomorphism H1(Jac(C)) ≃
H1(MdR(1)), which is an isomorphism of mixed Hodge structures. Hence H1(MdR(1)) is a
pure Hodge structure of weight 1. We see that the biholomorphism between MdR(1) and
MB(1) does not preserve mixed Hodge structures.

5



Theorem 1.22 (Curious Hard Lefschetz). Consider the variety MB(n, ℓ), (n, ℓ) = 1.

1. There exists a class α ∈ H2(MB(n, ℓ)) such that ∀K, i the multiplication by αK

αK : GrWdimMB−2KH
i → GrWdimMB+2KH

i+2K

is an isomorphism.

2. W2K−1H
• = W2KH

• and all classes in GrW2KH
i are of type (K,K).

Recall that we have a diffeomorphism MDol ≃ MB so H0(MDol) ≃ H0(MB).

Theorem 1.23 (Maulik-Shen’22 Hausel-Mellit-Minetz-Shiffman’22). The perverse and weight
filtrations essentially coincide i.e.

PKH
•(MDol(n, d)) = W2KH

•(MB(n, d)).

Consider the rank 1 case. On MB we have

W1(H
1(MB)) = 0

W2(H
1(MB)) = H1(MB) = Q2g

P1H
1(MDol) ≃ H1(MDol) = H1(Jac(C)) ≃ Q2g

so W2(H
1(MB)) = P1H

1(MDol) as the theorem predicts.
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