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1 Wednesday, October 5

There are now two proofs of the P = W conjecture that appeared a few days apart.

1.1 Betti space

Let C be a a smooth projective curve over C. Considering it in the analytic topology, we
have

T (C™) = (au, Bu .y g, By) /(] [ [, Bi] = 1)
Definition 1.1 (Betti space = character variety).
Mp(n,0) := Rep(n, C)//GL,(C)

It is a GIT quotient of Rep(n, C) := {p : m (C*") — GL,(C)}.
Fact 1.2. Mg(n,0) is an affine variety.

Indeed, Rep(n, C) is an affine variety given as

{(A1, By, ..., Ay, By) € GL,(C)* : [[14:. B = 1}

and a GIT-quotient of an affine variety is affine.

Definition 1.3 (Twisted character variety).
— . — ¢
Rep(n, (,C) = {(A1, B, ..., Ag, By) : [ [[4i, Bi] = 1}

where 1 is a primitive n-th root of unity. The twisted character variety is Mpg(n,l) =

Rep(n, ¢, C)//GL,(C).
Fact 1.4. Mg(n,{) is smooth iff (n,¢) = 1.
For n =1, GL; = C*, so

Mg(n,0) ~ Hom(m (C*™), C*) ~ Hom(H,(C*™),C*) ~ (C*)*



1.2 De Rham space

Definition 1.5. e Let X/C be a complex manifold, E be a complex vector bundle on
X. A connection is a differential operator

V:C®(E) = C®(E®QY
with the property that
V(fs)=fVs+df ®s

for a smooth function f and a section s.
e The curvature of V is Fy := V? € C*(End E @ Q).
e The connection is flat if Fy = 0.

Theorem 1.6. There is a one to one correspondence between Rep(n, X), local systems on
X of rank n, and vector bundles on X with a flat connection.

Local systems yield a representation via the monodromy representation, and a local
system L yields a vector bundle L ®c O with V(L ® 1) = 0.
Let E be a holomorphic vector bundle on X. One can define an operator

O : C®(E) = C*(E ® Q™)

as follows. If sq,...,s, a local basis of holomorphic sections of E then

EE(Z fisi) = ngi ® S

The operator O satisfies dg(fs) = fOps + df ® s and 52 =0.

Theorem 1.7. Holomorphic vector bundles correspond to complex vector bundles with an
operator O satisfying the above requirements.

Consider a connection
V:C® - C®E® Ql) ~C®E® QLO) ®CPFE® Qo’l)

The (0,1)-part V%! of V is defined to be the composition of V with the projection C*(E ®
QY — C®(E ® Q%). The flatness of V implies that (V%!1)? = 0. We thus obtain a
holomorphic structure on £ and V becomes a holomorphic connection. By definition, a

holomorphic connection V on a holomorphic vector bundle F is a connection such that
VOJ = EE

Fact 1.8. Let C' be a projective curve. Complex vector bundles with a flat connection on
C are in one-to-one correspondence with holomorphic vector bundles E with a holomorphic
connection. In their turn, they are in one-to-one correspondence with algebraic vector bundles
with an algebraic connection (by GAGA).

Definition 1.9. The de Rham moduli space Myr(n) parametrizes algebraic vector bundles
on C' with an algebraic connection.



A twisted version also exists, which we use here:

Theorem 1.10. There exists a biholomorphism between Mpg(n,l) and Mgg(n,t). This
biholomorphism is not algebraic.

Example. n = 1. A point in M g(1) corresponds to a pair {L, D} with L a line bundle
and D a connection. By forgetting the connection, we get a map Myg(1) — Jac(C).

If V,V’ are algebraic connections, then V' — V € H°(K() is a holomorphic form. Con-
versely, a sum of a connection and a 1-form is again a connection. Hence M4z (1) is an affine
bundle over Jac(C).

Affine bundles over Qj, . correspond to elements in H'(Jac(C), Qj,.)- The class of
Mr(1) is the class of theta divisor, which we will not prove. We have a biholomorphism

(C*)?9 ~ Myr(1)

It cannot preserve algebraic structures because (C*)?9 does not admit a non-trivial map
to an abelian variety.

1.3 Dolbeault space

Definition 1.11. Let E be a vector bundle. A Higgs field is ¢ € End(F) ® K. A pair
(E, ) is called a Higgs bundle.
The pair (E,v) is (semi)-stable if for every i-stable sub-bundle F' C E,

degF< deg F
tk ' = tk FE

(< for stable).

Theorem 1.12. There exists an algebraic variety Mpy(n,d) called Dolbeault moduli space
parameterizing semi-stable Higgs bundles.

1. It’s quasi-projective

2. The subspace corresponding to stable bundles M3, ,(n,d) C Mpu(n,d) is smooth and
Zariski open

3. If (n,d) =1 then Mpy(n,d) is smooth.

4. The moduli of semistable vector bundles embeds M(n,d) — Mpu(n,d) as a subset of
Higgs bundles with a trivial Higgs field.

5. The variety T*M?®(n,d) embeds into Mpu(n,d) as a Zariski open dense. Indeed,

TigM(n,d) ~ H'(C, End E) ~ H(End(E) @ Ko)*

6. There exists a holomorphic symplectic form on Mpy(n,d) which is an extension of the
standard holomorphic symplectic form on T*M?*(n,d).



Theorem 1.13 (Non-abelian Hodge correspondence). There ezists a real analytic isomor-
phism
Mpol(n, d) ~ MdR(n, f)

where d 1s a function of l. Moreover, the following holds.
o There exists a family ©: Mpygy(n,d) — Al with 771(0) ~ Mpy and 7 1(1) ~ Myg;
° deg — Al is a real analytically trivial deformation.

Hence we have isomorphisms of three moduli spaces

Mpol d;j> Mar(n,?) ﬁ Mg(n,l).

They give us isomorphisms of cohomology groups:

H*(Mpo1) ~ H(Mgr) ~ H*(M3p)

We will soon endow the leftmost group with a filtration called P-filtration, and the rightmost
one with W -filtration.

1.4 Perverse filtration
Let ¢ € End(F) ® K¢ be a Higgs field. Send
P e (Trap, Tr A% 4, ..., Tr A™ 1))

where Tr AP ¢ € HY(KE"). Locally ¢ = ¢ ® dz where ¢ € End(E) and ¢ is mapped to
(Try ® dz, ... Tr A" ®dz).

Definition 1.14. The Hitchin map is the map
Mpo — A", (E ) — (Try, ..., Tr A" )

Fact 1.15. The Hitchin map is a projective morphism. Moreover, it is a Lagrangian fibra-
tion. Hence a generic fiber is an abelian variety.

Theorem 1.16 (Deligne). For f: X — Y smooth proper morphism with X smooth there
exists a direct sum decomposition

2d
Rf.Qx ~ P R [.Qu[-i]
=0

Theorem 1.17 (BBDG). For f: X — Y proper with X smooth we have a decomposition

2d

Rf.Qx[dim X] ~ @D "H'(Rf.Qx[dim X])

1=0

where PH' are perverse cohomology groups (not defined today).
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It follows that there is a decomposition
H*(X, Qx[dim X]) ~ @5 RU("H'(Rf.Qx[dim X]))
Direct sum is not canonical, but the following filtration is:

Definition 1.18. Perverse filtration on H®*(X, Q) is defined as
¢
P,(H*(X,Q[dim X])) = @D RT("H'[dim X])
i=0

Theorem 1.19 (de Cataldo, Migliorini). Let f : X — Y be a proper map, X smooth, Y
affine. Embed Y into AN. Then

PHY(X) = ker[H(X) — HX(fTTAN K A y)]
The Hitchin map h : Mpg — AY induces a filtration P,H®(Mpg) for (n,d) = 1.

Example. Let v € H°(End(F) ® K¢) be a Higgs field. When n = rk F = 1 we have
Y € H°(K¢). Hence
Mpo = Jac(C) x H*(K¢) ~ T*Jac(C)

The Hitchin map is identified with the projection h : Mpy — H°(K¢) to the second factor.
The perverse filtration is trivial i.e.

PZHZ(MDOI) = HK(MDOI)
Definition 1.20. A mized Hodge structure is a Q-vector space Vg with two filtrations

e an increasing weight filtration W*Vg;

e a decreasing Hodge filtration F,V;
such that Gr}" Vg is a pure Hodge structure Vi.

Theorem 1.21 (Deligne). e The cohomology H*(X) of an algebraic variety X has a
natural mixed Hodge structure.

o If X is smooth, weights on H'(X) are [i, ..., 2i]
o Let X C X be a compactification of X. Then
W H (X) =im(H(X) — H(X))

e MHS depends on an algebraic structure!

Example. Let us compute the MHS on the first cohomology of Mp(1) = (C*)%9. First,
let us embed C* in P'. The previous theorem implies that W'H'(C*) = im H'(P') = 0.
Then W2H' = H?. The mixed Hodge structure on H'(C*) is pure of weight 2. Kunneth
formula implies that the same is true for H*(Mp(1)).

Consider the projection Myp(1) — Jac(C). It induces an isomorphism H*'(Jac(C)) =~
H'(Myg(1)), which is an isomorphism of mixed Hodge structures. Hence H'(Mgyp(1)) is a
pure Hodge structure of weight 1. We see that the biholomorphism between M4g(1) and
M (1) does not preserve mixed Hodge structures.
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Theorem 1.22 (Curious Hard Lefschetz). Consider the variety Mg(n, (), (n,f) = 1.
1. There exists a class a € H*(Mp(n,l)) such that VK, i the multiplication by o'

K. AW i W i+2K
« ‘GrdimMBfQKH — GT’dimMB+2KH

s an isomorphism.
2. Wog_1H® = Wy H® and all classes in Grys H' are of type (K, K).
Recall that we have a diffeomorphism Mpy ~ Mpg so H*(Mpy) ~ H°(Mp).

Theorem 1.23 (Maulik-Shen’22 Hausel-Mellit-Minetz-Shiffman’22). The perverse and weight
filtrations essentially coincide i.e.

PKH.(MDOZ(n7 d)) = W2KH.(MB(n7 d))
Consider the rank 1 case. On Mg we have
Wi(H'(Mp)) =0

Wo(H (Mp)) = H'(Mp) = Q¥
PLH' (Mpa) = H'(Mpa) = H' (Jac(C)) ~ Q¥
so Wy(HY(Mp)) = PLH'(Mpe) as the theorem predicts.
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