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1 January 31

These are the notes from last semester’s introductory talk on infinity categories. We will
give a quick summary.

1.1 Introduction

There are three big things we want to understand about infinity categories:

1. Why they are a good formalism for homotopy theory?

2. How can we construct them to still be category-like?

3. What are the properties of the category of infinity categories (especially in connection
to dg categories)?
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We unfortunately will not get to the third goal today, but we will try to elucidate the first
two.

Motivation 1: if you squint at a category, it looks like a graph. If there is any justice in
this world, we can generalize to simplicial complexes.

Motivation 2: we want to think about morphisms up to homotopy, but the hom sets in a
category do not record this information. So we ask for additional structure of 2-morphisms
between 1-morphisms, 3-morphisms between 2-morphisms, etc. to capture the full homotopy
theory. We also want higher morphisms to be invertible (like homotopies being invertible)
— but only up to higher higher morphisms.

We will develop the theory of (∞, 1)-categories, and henceforth they shall be known
as quasicategories. There are several ways of formalizing them (and understanding the
relationship between these formalisms is part of third goal). Today we will use simplicial
sets.

1.2 Simplicial Sets

Definition 1.1. ∆ is the simplex category with objects

[n] = (0, 1, ..., n), n ≥ 0

and morphisms are order preserving maps.

Example. The maps of ∆ are generated by
Coface maps

dk : [n− 1] → [n], (0, 1, ..., n− 1) 7→ (0, 1, ..., k̂, ..., n)

(unique injective map that misses k.)
Codegeneracy maps

sk : [n+ 1] → [n], (0, 1, ..., n+ 1) 7→ (0, 1, ..., k, k, ...n)

(unique surjective map that hits k twice).

We can think of ∆n as the topological simplex, dk includes ∆n−1 as the face of ∆n opposite
vertex k, and sk crushes ∆n+1 onto ∆n by pressing vertex (n+ 1) onto vertex k.

Definition 1.2. The category sSet of simplicial sets is the category of functors ∆op → Set.

The data of a simplicial set X:

• Sets Xn for n ≥ 0

• Face maps dk = X(dk) : Xn → Xn−1

• Degeneracy maps sk : X(sk) : Xn → Xn+1

(satisfying identities, which we omit). X can be thought of as not just one simplex, but a
simplicial complex. To see more precisely why, we introduce two new functors.
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Definition 1.3. Let S be a topological space, and let ∆n
Top be the topological n-simplex.

The singular complex functor Sing : Top → sSet takes

Singn(S) := HomTop(∆
n
Top, S)

The geometric realization functor is the left adjoint | − | : sSet → Top.

For intuition purposes,

X =

(
∞⊔
n=0

Xn ×∆n
Top

)
/ ∼

(one n-simplex for each element of Xn, glued together according to face/degeneracy maps).
The following notion will be our segue into categories. The k-th n-horn Λnk is the co-

equalizer ⊔
0≤i<j≤n

∆n−2 ⇒
⊔
i ̸=k

∆n−1 → Λnk

Intuitively, it is ∂∆n \ ∂k∆n.

Definition 1.4. A simplicial set X is a Kan complex (resp. weak Kan complex ) if every
horn ∆n

k → X for 0 ≤ k ≤ n (resp. 0 < k < n) can be extended to an n-simplex ∆n → X.

We refer to ∆n
k for 0 ≤ k ≤ n as inner horns and ∆n

0 and ∆n
n as outer horns.

We will see examples of these and related phenomena in the next section.

1.3 Towards Quasicategories

Here are some concepts that motivate and set up our definition of quasicategories.

Nerves The following construction connects simplicial sets to categories.

Definition 1.5. The nerve functor N : Cat → sSet takes

N(C)n = Fun([n], C)

where Fun(−,−), and morphisms (functors) induce maps on Fun(−,−) by composition.

Example. Consider N(C)2. This is the set of functors

1

0 2

−→ C

Given such a functor, note that d1 : N(C)2 → N(C)1 is composition and s1 : N(C)1 → N(C)2
is inserting an identity map.

Intuitively,
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• N(C)n is the set of strings of n composable morphisms in C

C0
f1−→ C1

f2−→ ...
fn−1−−→ Cn−1

fn−→ Cn

• di composes

C0
f1−→ ...

fi−1−−→ Ci−1
fi+1◦fi−−−−→ Ci+1

fi+2−−→ ...
fn−→ Cn

• si inserts identity

C0
f1−→ ...

fi−→ Ci
idCi−−→ Ci

fi+1−−→ ...
fn−→ Cn

Proposition 1.6. A category C can be recovered up to isomorphism from its nerve N(C).

Proof. The objects of C are N(C)0.
Morphisms C0 → C1 are given by ϕ ∈ N(C)1 with d1(ϕ) = C0 and d0(ϕ) = C1.
idC = s0(C).

Given C0
ϕ−→ C1

ψ−→ C2, there is a 2-simplex σ ∈ N(C)2 with d2(σ) = ϕ and d1(σ) = ψ.
Then ψ ◦ ϕ = d1(σ).

Now that we have embedded categories into simplicial sets, we can generalize them... to
INFINITY (and beyond?).

The generalization will come from horn extension properties.

Horn Extensions

Observation.

Λ2
0 → N(C)

c1

c0 c2

f

h

Λ2
1 → N(C)

c1

c0 c2

gf

Λ2
2 → N(C)

c1

c0 c2

f

h

An extension of the inner horn to ∆2 → N(C) corresponds to a composition g ◦ f .
(For h = id), extensions of the outer horns to ∆2 → N(C) correspond to an f−1.

Proposition 1.7. A simplicial set X is isomorphic to the nerve of a category iff for all
0 < k < n the inclusion Λnk → ∆n induces a bijection

Xn = Hom(∆n, X)
≃−→ Hom(Λnk , X)

X is the nerve of a groupoid iff the above holds for all 0 ≤ k ≤ n.
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Proof idea. See [5] Proposition 1.1.2.2.
Given the nerve of a category N(C), we want to show that we can uniquely extend horns.

A horn f0 : ∆
n
k → C contains the 1-skeleton

X0
g1−→ X1

g2−→ ...
gn−→ Xn

which uniquely defines f : ∆n → N(C) if it exists. To see existence, check that for j ̸= i,

f |∆0,...,j−1,j+1,...,n = f |∆0,...,j−1,j+1,...,n

(it follows from the 1-skeleton).
Conversely, given such a simplicial set, we can use the method of proof of Proposition1.6

to construct a category. However, we also need to check that the identity is actually the
identity, and that composition is associative. Extending the horn Λ3

1 → C uniquely to
∆3 → C

y

x

w z

h

h◦g

g

g◦f

(h◦g)◦f

f

shows that h ◦ (g ◦ f) = (h ◦ g) ◦ f .
To show that X ∼= N(C), induct on n to show

HomsSet(∆
n, X) → HomsSet(∆

n, N(C))

is a bijection.

The fact that nerves work so nicely might hint that a generalization is in order.
Recalling the definition of a Kan complex, we have the following inclusions.

Grpd Cat

Kan sSet

N N

Quasicategories Our recipe for quasicategories: full subcategory of sSet, like Cat only
need to extend inner horns, like Kan the extensions do not need to be unique.

Definition 1.8. A simplicial set X is a quasicategory iff for all 0 < k < n the inclusion
Λnk → ∆n induces a surjection

Xn = Hom(∆n, X) ↠ Hom(Λnk , X)

Why is this the correct notion? We only need compositions to be unique up to homotopy
— think composition of paths.

Now, we introduce some basic terminology. This will feel familiar, as it generalizes our
recovery of C from N(C).
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Definition 1.9. Let C be a quasi category.
Objects are the vertices x ∈ C0.
Morphisms are the 1-simplices f ∈ C1.
The source map is s = d1 : C1 → C0 and the target map is t = d0 : C1 → C0.
The identity map is id = s0 : C0 → C1
The set of morphisms from x to y is

homC(x, y) C1

∗ C0 × C0

(s,t)

(x,y)

Note that the simplicial identities imply d0s0 = d1s0 = idC0 , so idx = s0x is indeed a
morphism x→ x.

Later homC(x, y) will be given additional structure as a space,and will be important for
homotopy theory.

Definition 1.10. In a quasicategory C, consider morphisms f : x→ y and g : y → z. These

morphisms define an inner horn λ : Λ2
1 → C by x

f−→ y
g−→ z. Let σ : ∆2 → C be an extension

of λ. Then d1(σ) is a candidate composition for f and g.

Again, the choice of composition is not unique. But we want the space of choices to be
contractible.

Examples of Quasicategories

Example. N(C) is a quasicategory for any category C (bijective implies surjective).

Example. Sing(S) is a quasicategory for any topological space S. Since Λnk is a strong
deformation retract of ∆n, any continuous map on the former extends to the latter; this
works for k = 0, n as well, so Sing(S) is in fact a Kan complex.

Lemma 1.11. The product of quasicategories is a quasicategory.

Proof sketch. As simplicial sets, (X × Y )n = Xn × Yn, with dk(x, y) = (dk(x), dk(y)) and
sk(x, y) = (sk(x), sk(y)) (special case of limits of presheaves are computed pointwise).

Horn extensions on each coordinate together give horn extensions on the product.

Definition 1.12. Given a simplicial set K and a quasicategory C, the space of functors
Fun(K, C) is the simplicial set

Fun(K, C)n = Map(K, C)n = homsSet(∆
n ×K, C)

Note that Fun(K, C)0 = homsSet(K, C) recovers the hom set.

Proposition 1.13. If K is a simplicial set and C is a quasicategory, then Fun(K, C) is a
quasicategory.
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Lemma 1.14. For simplicial sets K,X, Y , there is a natural (in K,X, Y ) bijection

homsSet(K,Fun(X, Y )) → homsSet(K ×X, Y )

Proof sketch. There is an evaluation map ev : Fun(X, Y )×X → Y defined on f ∈ Fun(X, Y )n, x ∈
Xn by

evn : (f, x) 7→ f(ιn, x)

(should check it commutes with the face/degeneracy maps).
The forward map of our bijection takes g : K → Fun(X, Y ) to

K ×X
g×1−−→ Fun(X, Y )×X

ev−→ Y

The inverse applied to g : K ×X → Y applied to x ∈ Kn yields the simplicial map

∆n ×X
ιx×1−−→ K ×X

g−→ Y

Lemma 1.15. If K is a simplicial set, and Y is a quasicategory, then a map of simplicial
sets K × Λnk → Y can be extended to K ×∆n → Y for all 0 < k < n.

Proof idea. One proof involves the concepts of anodyne extensions and saturated classes of
morphisms, which we will not discuss.

Another proof uses induction on m and repeated application of the horn extension prop-
erty to fill in occurrences of Λml in X × Λnk ⊂ X ×∆n.

Proof of Proposition 1.13. The previous two lemmas show that Fun(K, C) satisfies the inner
horn extension condition.

Example. Consider Fun(∆1, C). Note that Fun(∆1, C)0 = homsSet(∆
1, C) yields the 1-

morphisms of C.

1.4 The Homotopy Category

Definition 1.16. Given a quasicategory C, two morphisms f, g : x → y are homotopic
(f ≃ g) if there is a 2-simplex σ : ∆2 → C with boundary ∂σ = (g, f, idx)

x

x y

gidx

f

and σ is a homotopy from f to g (σ : f → g).

An alternative definition could have placed idx on edge 0, but this is equivalent by the
inner horn extension property.

Proposition 1.17. Let C be a quasicategory, and x, y ∈ C. The homotopy relation is an
equivalence relation on homC(x, y), with the homotopy class of f : x→ y denoted [f ].
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Proof sketch. For identity, we want a constant homotopy.

κf = s0f : ∆2 → C

By the simplicial identities, d0κf = d0s0f = f and likewise d1κf = f , and d2κf = d2s0f =
s0d1f = idx. So ∂κf = (f, f, idx).

For symmetry, we want an inverse homotopy. Given σ : f → g, form the inner horn
(σ, κg, •, κidx) : Λ3

2 → C

x(1)

σ x(2) κid

κg

x(0) y(3)

idx

f

g

g

idx

idx

Extend to τ : ∆3 → C, and note that σ̃ = d2τ defines a homotopy σ̃ : g → f .
For transitivity, let f, g, h : x → y with σ1 : f → g and σ2 : g → h. Form the inner horn

(σ2, σ1, •, κid) : Λ3
2 → C

z(1)

κidx x(2) σ2

σ1

x(0) y(3)

idx

h

g

f

idx

idx

Extend to τ : ∆3 → C and note that σ̃ = d2τ gives us the desired homotopy f ∼ h.

Now, we have our key construction.

Proposition 1.18. Let C be a quasicategory. The homotopy category Ho(C) is an ordinary
category with the same objects as C and morphisms the homotopy classes of morphisms in C.
Composition is [g]◦ [f ] := [g◦f ] for any candidate composition g◦f , and idx := [idx] = [s0x].
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Proof. Let x
f−→ y

g−→ z, and let h1, h2 be candidate compositions of g and f , with σ1, σ2 :
∆2 → C giving h1 = d1(σ1) and h2 = d2(σ2). Form the inner horn (σ1, σ2, •, κf ) : Λ3

2 → C

x(1)

κf y(2) σ1

σ2

x(0) z(3)

h1

f

g

h2

f

idx

Extend to τ : ∆3 → C, and the new face d2τ : ∆2 → C gives us the desired homotopy
h2 → h1.

Remark. There is an alternative, more abstract construction of Ho(C) using the left Kan ex-
tension along the Yoneda embedding, which shows Ho(C) ∼= τ1(C), where τ1 is the categorical
realization functor which is the left adjoint to N the nerve functor.

Recalling that we wanted to generalize homotopies to higher morphisms between mor-
phisms, we have the following.

Definition 1.19. In a quasicategory C, an n-morphism from x → y is a map of simplicial
sets τ : ∆n+1 → C such that τ |∆0,...,n = x and τ |∆n+1 = y.

There are dual, weakly equivalent notions of the space of morphisms MapRC (x, y) and
MapLC (x, y) which are simplicial sets (in fact Kan complexes) of the sets of n-morphisms.

Remark. When we proved symmetry of the homotopy relation, we showed that homotopies
(2-morphisms) had inverses up to a 3-morphism. In fact, this argument generalizes: n-
morphisms have inverses up to (n+ 1)-morphisms as we wanted!

Finally, we have a beautiful result that characterizes quasicategories in terms of a key,
long-promised property.

Theorem 1.20. A simplicial set X is a quasicategory if and only if the restriction map

Fun(∆2, X) → Fun(Λ2
1, X)

is an acyclic Kan fibration.

Omitting proofs, as well as the definition of “acyclic Kan fibration” we instead explain
the content of the theorem.

If we want to compose x
f−→ y

g−→ z, we consider λ = (g, •, f) : Λ2
1 → X, which is the

data of a vertex in Fun(Λ2
1, X). A choice of composition g ◦ f is the data of on element in

10



Fun(∆2, X) that restricts under i∗ to the image of λ. Thus, the space of possible compositions
Fλ is the pullback

Fλ Fun(∆2, X)

∆0 Fun(Λ2
1, X)

λ

The theorem says that for quasicategories, Fλ is contractible. This means that any two
choices are homotopic (which we showed), but also that all homotopies and higher homotopies
comparing the two are equivalent.

The theorem further says that this property is the defining characteristic of quasicate-
gories.

It is remarkable that we only needed to examine Λ2
1 → ∆2 to obtain this result about all

higher homotopies!

2 February 7

Slightly more specific seminar outline:

• I will give the first ≈ 6 talks

≈ 2− 4 on infinity categories

≈ 2− 4 building up Derived Algebraic Geometry

• Last ≈ 5 talks (April/May), you are all welcome to give talks

Any applications (or vaguely related topics)

Let me know if there is background I should cover in advance

Today we will talk about model categories. Although their technical usefulness has
perhaps been diminished by the advent of other infinity categorical theories, I have been
advised that they are helpful for understanding why morally speaking things work.

The main goals for today are to build some comfort and intuition for the flavor of model
categorical arguments, and to see some important foundational results of the theory. Most
of this exposition is lifted from [2] and [3].

2.1 Definition and Basics of Model Categories

Definition 2.1. f : A→ B is a retract of g : C → D if ∃ a diagram:

A C A

B D B

f g f

with A→ A and B → B the identity.

This is a retract of objects in Map(C).
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Definition 2.2. A factorization is a pair of map (α, β) : Map(C) → Map(C) such that
f = β(f) ◦ α(f),∀f ∈ Map(C).

If α and β are functors, this is a functorial factorization.

Definition 2.3. Let i : A → B and p : X → Y . Then i has the left lifting property with
respect to p (LLP(p)) and p has the right lifting property with respect to i (RLP(i)) if for
every diagram

A X

B Y

i

f

p

g

∃h

there exists a lift h : B → X.

Lemma 2.4. LLP(p) is closed under pushouts and RLP(i) is closed under pullbacks.

Proof. Adjoin the pullback/pushout square to the lifting problem square, and it is clear that
the desired lift follows from the given lift.

Definition 2.5. A model category is a co/complete category with the data of a model
structure:

• Three subcategories: weak equivalences (W ), cofibrations (C), and fibrations (F )

• Two (functorial) factorizations (α, β) and (γ, δ)

satisfying

1. (2-out-of-3) If f and g are composable and two out of f , g, g ◦ f are in W , then so is
the third.

2. (Retracts) If f is a retract of g and g ∈ W (resp. C or F ) then f ∈ W (resp. C or F ).

3. (Lifting) C ∩W ⊆ LLP(F ) and C ⊆ LLP (F ∩W ).

Equivalently, F ⊆ RLP(C ∩W ) and F ∩W ⊆ C.

4. (Factorization) α(f) ∈ C, β(f) ∈ F ∩W and γ(f) ∈ C ∩W and δ(f) ∈ F .

C−→ F∩W−−−→,
C∩W−−−→ F−→

Remark. Notice the symmetry between C and F . Precisely, Copp has a model structure
with C and F reversed.

Remark. Some authors (especially Quillen originally) use weaker conditions.

• Only finite co/complete (less technically convenient)

• Non-functorial factorization (in all relevant examples, can be made functorial)

To get a feel for these definitions and the relationship between the conditions, let us prove
some lemmas.
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Lemma 2.6. If f is a retract of g and g ∈ LLP(φ) (resp. RLP), then f ∈ LLP(φ) (resp.
RLP).

Proof.

A R A X

B S B Y

f g f φ

The right-most square is the lifting problem we want to solve, and the left two squares give
the retraction. The right two squares are a lifting problem in g which we can solve, so
composing with the bottom-left-most map solves the lifting problem for the whole rectangle.
But since the horizontal maps of a retract are the identity, the whole rectangle has the same
maps as the right-most square!

The case of RLP is solved similarly.

Lemma 2.7. In a model category C,

C = LLP(F ∩W ), C ∩W = LLP(F )

and dually
F = RLP(C ∩W ), F ∩W = RLP(C)

Proof. By the axioms, C ⊆ LLP(F ∩W ).

Let f : R → T with f ∈ LLP(F ∩W ). Factor f as R
i−→ S

p−→ T with i ∈ C, p ∈ F ∩W .
Since f ∈ LLP(p):

R S

T T

f

i

p

idT

h

we have h such that i = h ◦ f and idT = p ◦ h. Thus,

R R R

T S T

f

idR idR

i f

h p

shows that f is a retract of i, proving f ∈ C, so C = LLP(F ∩W ).
Similarly, C ∩W ⊆ LLP(F ) by the axioms, and factoring f ∈ LLP(F ) as f = p ◦ i with

i ∈ C ∩W and p ∈ F we can use the same argument to show f is a retract of i so f ∈ C ∩W
and C ∩W = LLP(F ).

Finally, the dual statements follow immediately from applying what we have shown to
Cop.

Definition 2.8. In a model category C, let ∅ be the initial object and ∗ be the terminal
object. If ∅ → X is a cofibration, then X is cofibrant. If Y → ∗ is a fibration, then Y is
fibrant.

Let Cc and Cf denote the full subcategory of cofibrant and fibrant objects respectively,
and let Ccf = Cc ∩ Cf .
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For any X, we can factor ∅ → X through QX such that QX is cofibrant and qX : QX →
X is a natural trivial fibration (naturality follows from functoriality of the factorization).
Similarly, we can find RX such that RX is fibrant and there is rX : X → RX is a natural
trivial cofibration.

Definition 2.9. The functor C → Cc mappingX 7→ QX is the cofibrant replacement functor,
and the functor C → Cf mapping X 7→ RX is the fibrant replacement functor.

2.2 Cofibrantly Generated Model Categories

By the previous lemma, to define a model structure it suffices to define W and C (resp. F ),
and F (resp. C) is defined as LLP(F ∩W ) (resp. RLP(C ∩W )).

It turns out we can (sometimes) define a model category with even less data. This
requires a bit of set up.

Definition 2.10. Let I ⊂ Mor(C). An I-diagram is

Z0 → Z1 → ...

such that each Zk → Zk+1 is a pushout of elements of I.
An object X ∈ C is I-small if for any I-diagram there is a bijection

colimkHom(X,Zk)
≃−→ Hom(X, colimkZ)

Theorem 2.11. Let C be a co/complete category, letW ⊂ C, and let I, J ⊂ Mor(C) satisfying

• W contains all isomorphisms, satisfies two-out-of-three, and is closed under retracts

• RLP(I) = RLP(J) ∩W

• Domains of I (resp. J) are I-small (resp. J-small)

• Colimits of J-diagrams are in W ∩ LLP(RLP(I))

Then C has a model structure with W = W , F = RLP(J), and C = LLP(RLP(I)).

In such a case, we call C cofibrantly generated.

Proof sketch. The retract axiom holds by our lemma that retracts preserve lifting properties.
We are given two-out of three. We are given C ⊂ LLP(F ∩W ), and C ∩W ⊂ LLP(F ) will
follow from the other axioms once we have factorization (see [3] Theorem 2.1.19 for details).

The proof of factorization will follow from the small object argument, which we now
explain.

Theorem 2.12 (Small Object Argument). Suppose C is cocomplete and I ⊂ Mor(C) such
that domains of maps in I are I-small. Then there is a functorial factorization (γ, δ) on all
f ∈ C such that γ(f) is the colimit of an I-diagram, and δ(f) ∈ RLP(I).
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Proof sketch. The proof uses transfinite induction, but we will gloss over the set-theoretical
technicalities.

Fix f : X → Y . Let Z0 = X and ρ0 = f . Assume Zk and ρk : Zk → Y are defined. Let
S be the set of diagrams of the form below with gs ∈ I.

A Zk
⊔
s∈S As Zk

B Y
⊔
s∈S Bs Zk+1

gs ρk
⊔
gs

Then define Zk+1 by the pushout on the right above, and let ρk+1 : Zk+1 → Y be induced
by ρk and

⊔
s∈S Bs → Y .

Let Z = colimZk, and let γ : X → Z be the composition of all Zk → Zk+1. By
construction, γ is the colimit of an I-diagram.

Let δ : Z → Y be induced as colimkρk. It remains to show that δ ∈ RLP(I). Let the
outer diagram be the lifting problem, with g ∈ I.

A Z

Zk Zk+1

B Y

g

α

αk

δ

ρk+1

β

βk

By hypothesis, A is I-small, so α ∈ Hom(A,Z) = colimkHom(A,Zk) corresponds to some
αk : A → Zk. By construction we have a map βk : B → Zk+1 that commutes with the
diagram. Thus, the dotted line solves the lifting problem.

“Small object” refers to A since maps A→ Z must factor through some Zk.

Theorem 2.13. sSet has a cofibrantly generated model structure, with f : X → Y in W iff
|f | is a weak homotopy equivalence, I = {∂∆n → ∆n}n≥0 and J = {Λnk → ∆n}n≥0.

Proof Sketch. It suffices to check the four conditions of the Theorem on cofibrantly generated
categories.

The conditions on W follow from functoriality of πn and the adjunction.

• Domains of I and J are I-small and J-small, because |∂∆n| ∼= Sn and |Λnk | ∼= Dn

are compact and therefore factor through a finite filtration, which applies thanks to
adjunction.

• Since || is a left adjoint, it preserves colimits. And |Λnk → ∆n| ∼= Dn → Dn× I. Given
Dn → X we have X → Dn × [0, 1] ⊔Dn X is the inclusion into the mapping cylinder,
so the colimit of a J-diagram is the inclusion into the mapping telescope which is a
homotopy equivalence and so in W .
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• Tautologically I ⊂ LLP(RLP(I)), so pushouts of I are in LLP(RLP(I)). And since
each element of J is the pushout of elements of I, we have J ⊂ LLP(RLP(I)). And
thus colimits of J-diagrams are in LLP(RLP(I)).

• It just remains to show that RLP(I) = F ∩W . Again since elements of J are pushouts
of elements of I, we have RLP(I) ⊂ RLP(J) = F .

For weak equivalence, it is a fact ([2] Lemma 4.3.2) that |f | is a fibration for f ∈
RLP(I), and by the LES on homotopy groups it suffices to show |f | has contractible
fibers. It is also a fact ([2] Lemma 4.3.1) that the fiber of |f | is |F |, where F is the
fiber of f . Since fibers pullback, F → ∆0 is a fibration. Since products preserve lifting
properties, can solve the following lifting problem:

F × ∂∆1 F

F ×∆1 ∆0

(idF ,∗)

which gives a homotopy between idF and the constant map as desired. Thus, RLP(I) ⊆
F ∩W .

It turns out that the reverse inclusion RLP(I) ⊇ F ∩W is much harder to show, and
builds on Quillen’s Theory of Minimal Fibrations. We forgo an explanation, citing [3]
Sections 3.3-3.6.

Remark. The fibrant objects of sSet are the Kan complexes.

Furthermore,

Proposition 2.14. A map f : K → L in sSet is a cofibration iff it is level-wise injective.
Thus, every simplicial set is cofibrant.

Proof. LLP(RLP)(I) is precisely generated by I via pushouts, transfinite composition, and
retracts (see Proposition 2.3; the proof is a straightforward application of the small object
argument/retract argument).

The maps of I are injective, and injections of simplicial sets are closed under pushouts/transfinite
composition/retracts, so cofibrations are injective.

Conversely, if f : K → L is injective, it is a countable composition of pushouts of
coproducts of maps in I. Since these preserve lifting properties, f is a cofibration.

Theorem 2.15. Top has a cofibrantly generated model structure with W as weak ho-
motopy equivalences, I = {Sn−1 → Dn}n≥0 and J = {Dn → (Dn × [0, 1])}n≥0. Then
F = {Serre fibrations} and C = LLP(F ∩W ).

We omit the proof since it is similar to the case of sSet.

Corollary 2.16. Every topological space is fibrant.
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Proof. Since Dn → Dn × [0, 1] has a section (projection) the lifting problem is trivial.

Dn X

Dn × [0, 1]

3 February 14

3.1 Model Structures on Chain Complexes of Modules

As a refresher on what model structures are, we define a couple of them on the category of
chain complexes of modules. This is a particularly important example, as our later work
today will define the derived category of modules, and really of any abelian category. I won’t
prove much, but there are some important high-level ideas here.

Proposition 3.1. Let C be the category of complexes of R-modules in non-negative degree.
Then there is a model structure on C defined by

• W : quasi-isomorphisms

• F : surjective maps (degree-wise)

• C: LLP(F ∩W ) (injective maps with projective cokernel, degreewise)

Proof reference. See [2] 3.2.4 for details.

Corollary 3.2. In this model structure, all objects are fibrant. And cofibrant objects are
precisely the complexes consisting of projective modules.

Proof idea. Clearly all complexes surject onto the terminal module.
Recall that an R-module P is projective iff it ∅ → P is in LLP(surjections). Using

boundedness and quasi-isomorphism, we can lift degree-wise (might be good to do this in
detail at some point).

Remark. For unbounded complexes, cofibrant implies each degree is a projective R-module.
However, the converse does not hold in general.

Remark. Recall that cofibrant replacement gave a weak-equivalence with a cofibrant object.
In this case, a cofibrant replacement is a projective resolution.

Note that for topological spaces, CW complexes are cofibrant objects,and every topolog-
ical space is weakly equivalent to a CW complex.

Recall that Blumberg said “projective resolutions are secretly CW complexes”. Maybe
this is what he had in mind.

Dually, there is another model structure
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Proposition 3.3. Let C be the category of complexes of R-modules in non-negative degree.
Then there is a model structure on C defined by

• W : quasi-isomorphisms

• C: injective maps (degree-wise)

• F : RLP(C ∩W ) (surjective maps with injective kernel, degreewise)

Corollary 3.4. In this model structure, all objects are cofibrant. And fibrant objects are
precisely the complexes consisting of injective modules.

Remark. Fibrant replacement is an injective resolution.

Remark. We could also have defined the projective model structure as cofibrantly generated
withW quasi-isomorphisms, I = {Sn−1 → Dn} and J = {0 → Dn}. Here Sn as the complex

with R in degree n and 0 elsewhere, and Dn is R
id−→ R in degrees n and n−1 and 0 elsewhere.

In fact, this model structure is inherited directly from the Joyal model structure on sSet
via the Dold-Kan correspondence.

3.2 The Homotopy Category of a Model Category

Definition 3.5. For X ∈ C, a cylinder is a diagram

X ⊔X ∈C−−→ CX
∈F∩W−−−−→ X

If f0, f1 : X → Y induce X ⊔X → Y that factors through CX , then f0 and f1 and are left
homotopic.

Example. If C = Top with the usual model structure, then we can take cylinder object

X ⊔X (i0,i1)−−−→ [0, 1]×X
πX−→ X

and the factor map [0, 1]×X → Y is our usual notion of homotopy.

Of course, there is a dual notion.

Definition 3.6. For Y ∈ C, a path object is a diagram

Y
∈C∩W−−−−→ PY

∈F−−→ Y × Y

If f0, f1 : X → Y induce X → Y × Y that factors through CX , then f0 and f1 are right
homotopic.

Example. If C = Top (convenient category) with the usual model structure, then we can
take path object

Y
y 7→{[0,1] 7→y}−−−−−−−→ Y [0,1] p7→(p(0),p(1))−−−−−−−→ Y × Y

and the factor map X → Y [0,1] is the adjoint of the standard notion of homotopy.
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Lemma 3.7. If X is cofibrant, left homotopy is an equivalence relation on maps X → Y .
If Y is fibrant, right homotopy is an equivalence relation for X → Y .

Proof sketch. Reflexivity and symmetry hold in general, need the cofibrant condition for
transitivity. See [3] Proposition 1.2.5 for details.

Remark. By duality, if X is cofibrant and Y is fibrant, left and right homotopy coincide.

Definition 3.8. Let C be a category, and W ⊂ Mor(C). A localization of C with respect to
W is a functor F : C → D carrying all arrows of W to isomorphisms, such that

• If f ′ : C → D′ carries W to isomorphisms, then ∃(g, θ) with g : D → D′ and natural

isomorphism θ : f ′ ≃−→ g ◦ f .

• If (g′, θ′) is another such pair, ∃! natural isomorphism α : g → g′ commuting with θ
and θ′.

Remark. This exists, as we can form the free category F (C,W−1) and then impose the
relations

idA = (1A), (f, g) = (g ◦ f), iddom(w) = (w,w−1), idcodom(w) = (w−1, w)

See [3] Lemma 1.2.2 to check that this satisfies the universal property.

Definition 3.9. The homotopy category Ho(C) of a model category C is the localization at
W .

Proposition 3.10. The inclusion functors induce equivalences of categories

Ho(Ccf ) → Ho(C∗) → Ho(C)

(for ∗ = c, f).

Proof. We will show that Q and R induce inverse functors. If X → Y is a weak equiva-
lence, then by two-out-of-three, QX → Y is a weak equivalence and QX → QY is a weak
equivalence.

QX X

QY Y

qX

qY

Thus, Q induces functors Ho(Cc) → Ho(C) and likewise for R.
And qX gives natural weak equivalences q ◦ i → 1Cc and i ◦ Q → 1C, which descend

to natural isomorphisms on the homotopy categories. Thus, Ho(Q) and Ho(i) are inverse
equivalences of categories, and likewise for Ho(R).

The great thing (we will see later why this is so useful) is that the fibrant/cofibrant
homotopy categories have a description in terms of actual homotopy.

Theorem 3.11 (Whithead). In Ccf , weak equivalences are precisely the homotopy equiva-
lences.
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Proof idea. Entirely formal, using axioms and definitions. See Theorem 3.2.

This is easy to show, but much harder to prove in the case of topological spaces. Reason:
all the heavy lifting went into proving the model structure for Top.

Proposition 3.12. There is a unique isomorphism of categories Ccf/ ∼→ Ho(Ccf ), and it
is the identity on objects.

Proof idea. Go through and check that Ccf satisfies the universal property of Ho(Ccf ).
See [3] Corollary 1.2.9 for details.

Remark. For bounded chain complexes with the projective/injective model structure, Ccf
are projective/injective complexes.

3.3 Quillen Adjunction and Derived Functors

Definition 3.13. F : C ↔ D : G adjoint functors between model categories form a Quillen
adjunction if

• F preserves cofibrations and trivial cofibrations

• G preserves fibrations and trivial fibrations

Remark. The two bullet points above are equivalent, because F (f) ∈ LLP(g) ⇐⇒ f ∈
LLP(G(g)) by naturality of the adjunction.

F (A) X A G(X)

F (B) Y B G(Y )

F (f) g f G(g)

Theorem 3.14. A Quillen adjunction F : C ↔ D : G induces an adjunction

LF : Ho(C) ↔ Ho(D) : RG

Remark. The functors LF and RG satisfy a universal property that makes them derived
functors. Given a functor F : C → C ′, the left derived functor LF : C[W−1] → C ′[W−1] is
part of the universal pair (LF, α) such that in the following diagram

C C ′

C[W−1] C ′[W ′−1]

F

Q Q

LF

there is a natural transformation α : LF ◦ Q → Q ◦ f . For the right derived functor, there
is a natural transformation Q ◦ F → RF ◦Q. See [2] 3.4.1 for more.

Lemma 3.15. F preserves weak equivalence of cofibrant objects, G preserves weak equiva-
lence of fibrant objects.
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Proof. Let A,B ∈ Cc and f : A→ B with f ∈ WC. Factor A ⊔B (f,id)−−−→ as A ⊔B p−→ C
q−→ B

with p ∈ C, q ∈ F ∩W .
Since {} → A and {} → B are in C, their pushouts i : A → A ∪ B and j : B → A ∪ B

are in C; and p ∈ C so p ◦ i, p ◦ j ∈ C.
Since q ◦ p ◦ i = f and q ◦ p ◦ j = idB are in W , and q ∈ W , so p ◦ i, p ◦ j ∈ C ∩W by

two-out-of-three.
By Quillen condition, F (p ◦ i), F (p ◦ j) ∈ C ∩W .
Since F (q) ◦ F (p ◦ j) = F (q ◦ p ◦ j) = F (idB) = idF (B) ∈ W , so F (q) ∈ W .
Thus, F (f) = F (q ◦ p ◦ i) = F (q) ◦ F (p ◦ i) ∈ W .
And G preserving weak equivalences of fibrant objects follows dually.

Proof of Theorem. By the lemma, F descends to a well-defined functor Ho(Cc) → Ho(D) and
G descends to a well-defined functor Ho(Df ) → Ho(C). But by the equivalence of homotopy
categories, we have well-defined functors F,G between Ho(C) and Ho(D).

For X ∈ Cc and Y ∈ Df we want a natural isomorphism

φ : HomHo(D)(FX, Y ) ↔ HomHo(C)(X,GY )

But we have natural isomorphisms

HomHo(D)(FX, Y ) ↔ HomD(FX, Y )/ ∼, HomHo(C)(X,GY ) ↔ HomC(X,GY )/ ∼

where ∼ is left/right homotopy.
Thus, we just need to verify that φ respects homotopy relations. Suppose f, g : FX → Y

are homotopic, with path object Y ′ and right homotopy H : FX → Y ′. Since G preserves
products/fibrations/WDf we have G(Y ′) is a path object for G(Y ). Thus, φ(H) : X → G(Y ′)
is a right homotopy from φf to φg.

Conversely, let φf and φg be homotopy, with cylinder object X ′ for X and left homotopy
H : X ′ → G(Y ). Then since F preserves coproducts/cofibrations/WCc we have F (X ′) a path
object for F (X), so φ−1(H) : FX ′ → Y a left homotopy from f to g.

3.4 Homotopy (co)limits

This section is a bit of a tangent, but is an important application of Quillen adjunctions.
We will sketch out the main ideas.

Definition 3.16. Let C a model category and D a small category (think diagram). The
projective model structure on the functor category CD (if it exists) has

• W is object-wise weak equivalences in C

• F is object-wise fibrations in C

and the injective model structure on CD (if it exists) has

• W is object-wise weak equivalences in C

• C is object-wise cofibrations in C
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Lemma 3.17. For C a cofibrantly generated model category and D a small category, CD
admits a projective model structure.

Proposition 3.18. Let CD have a well-defined projective model structure. Then the colimit
functor (CD)proj → C is a left Quillen functor. Dually, if CD has a well-defined injective
model structure, then the limit functor (CD)inj → C is a right Quillen functor.

Proof. Recall that the colimit functor is left adjoint to the diagonal functor ∆ : C → CD.
Thus, it suffices to show that ∆ is a right Quillen functor; this is immediate since both F
and W are define point-wise.

The dual statement follows dually.

Definition 3.19. If CD has the projective model structure, then the homotopy colimit func-
tor is the total left derived functor of colimit. Dually, if CD has the injective model structure,
the homotopy limit is the total right derived functor of limit.

Example. Constructions such as homotopy fiber and homotopy cofiber.

Theorem 3.20. Homotopy (co)limits exist for all model categories.

Proof reference. Uses additional theory of homotopical categories, as well as Reedy model
structures on functor categories.

See here for details.

3.5 Quillen Equivalence

Definition 3.21. A Quillen adjunction F : C ↔ D : G is a Quillen equivalence if for any
X ∈ Cc and Y ∈ Df ,

{a : X → G(Y )} ∈ W ⇐⇒ {a′ : F (x) → Y } ∈ W

A Quillen equivalence is NOT an equivalence of categories. However:

Proposition 3.22. A Quillen adjunction F : C ↔ D : G is a Quillen equivalence if and
only if

LF : Ho(C) ↔ Ho(D) : RG

is an equivalence.

Proof. The latter is equivalent to the unit and counit being isomorphisms in the homotopy
category, which is equivalent to their being weak equivalences.

Consider the unit u : idC → RG ◦ LF . For any C ∈ Cf , we can explicitly write (RG ◦
LF )(C) = G(D) for D ∈ Df and {F (C) → D} ∈ WD.

Thus, uC is a weak equivalence iff {F (C) → D} ∈ WD =⇒ {C → G(D)} ∈ WC.
Likewise, for v the counit, vD is a weak equivalence iff the converse holds. These two
conditions are the definition of a Quillen equivalence.

Proposition 3.23. The identity functor induces a Quillen equivalence between the projective
and injective model structures on Ch+(R).
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Proof. Obviously the identity is an adjunction. Since cofibrations in the projective model
structure and a subset of injections, which are cofibrations in the injective model structure,
this is a Quillen adjunction. And it preserves weak equivalences, since the are defined the
same way in both structures, so it is a Quillen equivalence.

Remark. Any map f : R → R′ induces a Quillen adjunction between Ch+(R) and Ch+(R
′)

via induction and restriction, and this is a Quillen equivalence iff f is an isomorphism.
See [3] end of Section 2.3 for more.

Proposition 3.24. Suppose F : C ↔ D : G is an adjunction between model categories,
with C cofibrantly generated by I, J . Then F , G form a Quillen adjunction iff F (I) are
cofibrations and F (J) are trivial cofibrations.

Proof reference. See [3] Lemma 2.1.20; straightforward application of the axioms and ad-
junction.

Theorem 3.25. There is a Quillen equivalence

|| : sSet ↔ Top : Sing

Proof. To see that we have a Quillen adjunction, it suffices to see that

|I| = {|∂∆n → ∆n|} = {Sn → Dn}

is a cofibration, and
|J | = {|Λnk → ∆n|} = {Dn → Dn × [0, 1]}

is a trivial cofibration.
To prove Quillen equivalence, let S be a simplicial set and X a topological space. Then

S is automatically cofibrant and X is automatically fibrant. Thus, we just need to prove

{|S| → X} ∈ W ⇐⇒ {S → Sing(X)} ∈ W

The latter is equivalent to {|S| → |Sing(X)|} ∈ W , so it suffices to show that |Sing(X)| →
|X| is a weak homotopy equivalence, and a homotopy equivalence can be checked explicitly,
such as by the first answer here.

4 February 28

So far, quasicategories are our only model for infinity categories. Today we will see other
structures that manage higher homotopical data and realize the concept of infinity categories.
These will tie in with our work on model theory, and will set up the Grothendieck construction
and Yoneda lemma for next time — which enable all manner of categorical constructions.

We will omit most proofs. Anyway, they are formal consequences of model structures
and/or simplicial technology, and resemble proofs we’ve seen before.
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4.1 Simplicial Categories

Recall, given a category C, the nerve N(C) ∈ sSet was defined by N(C)n = {[n] → C} (or,
equivalently, n-simplices are n-compositions).

And recall the homotopy category of a quasi-category X was defined by

HomHo(X)(x, y) = π0(Hom
R
X(x, y))

Now, we show an important result which we mentioned but brushed over last semester.

Theorem 4.1. Let h be the left adjoint of the nerve functor:

h : sSet ↔ Cat : N

Then for any quasi-category X, canonically h(X) ∼= Ho(X).

Proof idea. If X is a quasi-category, a map X → N(Ho(X)) consists of

• a map f : X0 → Ob(Ho(X))

• for a ∈ X1 an assignment f(a) ∈ HomC(f(d1a), f(d0a))

• for α ∈ X2 a composition whose face maps give relations between f(a), f(a′)

and these relations are precisely homotopy equivalences.

We will see a beefed up version of this adjunction when it comes to simplicial categories.

Definition 4.2. Let sCat be the category of simplicially enriched categories.

Note that given C ∈ sCat, we can define π0(sCat) as the conventional category with
Ob(π0(C)) = Ob(C) and Homπ0(C)(X, Y ) = π0(MapC(X, Y )).

Whereas our earlier adjunction lost information between sSet and Cat, our next adjunc-
tion will preserve information between sSet and sCat.

Definition 4.3. Let C[n] be the simplicial category with objects [n] and mapping spaces
MapC[n](i, j) := N(Pi,j) where

Pi,j =

{
∅ i > j

Poset of subsets of {i, i+ 1, ..., j} that contain {i, j} i ≤ j

with composition
MapC[n](i, j)×MapC[n](j, k) → MapC[n](j, k)

given by taking the union.

The point is that we are just repackaging simplicial sets as simplicial categories. This
gives us functors.

Definition 4.4. Let C : sSet → sCat be defined by C(∆n) = Cn, and extended by colimits.
The homotopy coherent nerve functorN : sCat → sSet is defined byN(C)n = HomsCat(C

n, C).
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Proposition 4.5. There is an adjunction

C : sSet ↔ sCat : N

We will see later that this is more than just an adjunction, wink wink.

Proposition 4.6. sCat has a model structure defined as follows. A map (simplicial functor)
f : C → D is

• a weak equivalence if

– f induces a weak homotopy equivalence MapC(x, y) → MapD(fx, fy) for all x, y ∈
C. This is a Dwyer-Kan equivalence.

– f is essentially surjective

• a fibration if

– f induces a Kan fibration (i.e., RLP(Λnk → ∆n)) MapC(x, y) → MapD(fx, fy) for
all x, y ∈ C

– if α : f(c) → d is an equivalence in D (i.e., an isomorphism in Ho(D)), then
there is a lift a : c→ c′ with c = f(c′), α = f(a)

Remark. The main content is in the first conditions. In particularly, if we fix a set of
objects O and have f be the identity on objects, the latter conditions follow the former.
This generality is enough for DK localization.

This model structure is cofibrantly generated. I won’t bother giving or proving the details
of I and J .

With this model structure, we have the following result

Theorem 4.7. There exists a model structure on sSet (the Joyal model structure) with

• Cofibrations are injective maps

• Weak equivalences are maps carried by C to DK equivalences of simplicial categories

• Fibrant objects are precisely the quasi-categories (RLP of inner horns)

And the adjoint pair (C,N) is a Quillen equivalence.

This is a difficult theorem! But it is valuable: recall that this gives an equivalence of
homotopy categories.
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4.2 DK Localization

Now we will discuss derived functors in the setting of simplicial categories.
As before, we start with a naive notion of localization: for simplicial category C with

subcategory W , we can define C[W−1] as the simplicial category with n-cimplicies Cn[W−1
n ].

DK localization will be the left derived version of this.
Recall that this satisfies a universal property, and can be computed as follows

W̃ C̃ L(C,W )

W C

p

f̃

q

localization

f

Let W̃ be cofibrant, p a trivial fibration, f̃ a cofibration and q a trivial fibration. Then let
L(C,W ) = C̃[W−1].

There is also an explicit construction LH(C,W ) called the Hammock version of DK
localization. This is in [2] 5.4.4, and was covered by Emily last semester. I don’t expect you
to remember it from then, but I also don’t expect it to make any sense now, so I’ll omit the
details. Here are some key facts about DK localization.

Proposition 4.8. • Any arrow in W becomes an equivalence in LH(C,W )

• π0L
H(C,W ) = C[W−1] (as usual, the homotopy category is naive localization)

• If C is a simplicial category with model structure, then the homotopy category of
Ho(LH(C,W )) = Ho(C) (with the RHS taken as a model category).

• Quillen equivalence of model categories gives rise to an equivalence of DK localizations.

Thus, DK localization gives the “infinity category underlying a model category.”
That is, assuming we think of simplicial categories as infinity categories. If we want to

stick with quasi-categories, then the underlying infinity category is

N(LH(C,W )f )

4.3 Segal Spaces

Let’s motivate Segal spaces. Recall:

Proposition 4.9. N : Cat → sSet is fully faithful, with X in the essential image iff either
of the following two equivalent properties hold

• Each map
Xn → X1 ×X0 X1 ×X0 ...×X0 X1

(induced by Sp(n) → ∆n) is bijective.

• Each map Xn → Hom(Λni , X) for 1 ≤ i ≤ n (induced by Λni → ∆n) is bijective.
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The first one follows since the nerve is defined by 1-morphisms, and the second because
composition is unique.

To define quasi-categories, we took the latter definition and replaced “bijective” with
“surjective”; to define segal spaces, we will take the former definition and replace “bijective”
with “weak-equivalence”.

We need some setup to make this work.

Definition 4.10. Let ssSet be the category of bisimplicial setsX•• ∈ Fun(∆opp×∆opp,Set).

This definition seems symmetric in the two coordinates, but our interpretation will break
this symmetry. In particular, we will think of X ∈ ssSet, Xn = Xn,• as a simplicial object
in sSet (i.e., a simplicial object in spaces).

Example. Consider the two projections ∆ × ∆ → ∆, and let c, d : sSet → ssSet be
the induced maps. For X ∈ sSet, note that c(X)n = X (“constant”) while d(X)n = Xn

(“discrete”).

Example. Denote ∆m,n = d(∆m)× c(∆n) and note that

Xm,n = Hom(∆m,n)

Thus, ∆m,n is a presheaf on ∆×∆ represented by the pair ([m], [n]).

Since ssSet is a presheaf category, it has internal hom.

Lemma 4.11. The direct product in ssSet has a right adjoint

Fun(X, Y )m,n = Hom(X ×∆m,n, Y )

Lemma 4.12. The category ssSet is simplicially enriched via

Map(X, Y )n = Fun(X, Y )0,n = Hom(X × c(∆n), Y )

Again, formally, there is another enrichment symmetrically, but this is the one of interest
to us.

Note thatXn = Map(d(∆n), X) and for any S ∈ sSet we can writeX(S) := Map(d(S), X).
To get a model structure, let’s talk about about model structures generally on functor

categories.
Recall that we earlier defined “projective” and “injective” model structures on Fun(I,M),

with weak equivalences and fibrations/cofibrations determined point-wise. But recall that
these only worked for certain M . Now we define another model structure that works for all
M but only some I.

Theorem 4.13 (Reedy Model Structure). The category ssSet = Fun(∆op,Set) has a model
structure defined as follows. For a map f : X → Y ,

• f ∈ W iff fn : Xn → Yn is a weak equivalence of sSet

• f ∈ C iff fn : Xn → Yn is a cofibration in sSet (i.e, an injection)
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• f ∈ F is a (resp. trivial) fibration iff X0 → Y0 is a (resp. trivial) Kan fibration, and
for each n > 0

Xn → Yn ×Y (∂∆n) X(∂∆n)

is a (resp. trivial) Kan fibration.

This model structure has an important nice formal property.

Definition 4.14. A model category M is left proper if all pushouts of weak equivalences
along cofibrations are weak equivalences, is right proper if all pullbacks of weak equivalences
along fibrations are weak equivalences, and is proper if it is both left and right proper.

Note: if all objects of M are cofibrant, then M is left proper. If all objects of M are
fibrant, then M is right proper.

Lemma 4.15. The Reedy model structure on ssSet is proper.

Now we can express the intuition we gave earlier.

Definition 4.16. X ∈ ssSet is a Segal space if

• X is Reedy fibrant

• Xn → X1 ×X0 X1 ×X0 ...×X0 X1 is a weak equivalence

In fact, the first condition implies that the latter map is a (trivial) Kan fibration.
Now we see how we can (almost) interpret Segal spaces as infinity categories. For a Segal

space X, let

• The set of objects of X be X0,0.

• For x, y ∈ X00, let Map(x, y) be the fiber at (x, y) of

X1 → X0 ×X0

(so it is an element of X10). Since this map is a fibration by definition, and fibrations
pull back, the fiber is a Kan simplicial set.

• Define composition by

X1 ×X0 X1 → X1
d1−→ X1

where the first map is a section of X2 → X1 ×X0 X1, which exists since it is a trivial
fibration. This is not unique.

• The homotopy category of X is defined by

HomHo(X)(x, y) = π0(MapX(x, y))

Check that composition is unique and associative.

Now we have yet another related notion of DK equivalence:
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Definition 4.17. A map f : X → Y of Segal spaces is a DK equivalence if

• MapX(x, y) → MapY (fx, fy) is an equivalence ∀x, y ∈ X

• ∀y ∈ Y ∃x ∈ X and ∃ an equivalence f(x) → y.

Proposition 4.18. Reedy equivalence (i.e., isomorphism in the homotopy category under
Reedy model structure) implies DK equivalence.

However, the converse does not hold!

Definition 4.19. Let C be a category. Construct a simplicial object in simplicial sets
(bisimplicial set)

n 7→ N((C[n])iso)

where C[0] is the maximal subgroupoid of C and C[n] is the arrow category of C[n−1]. This is
the Rezk nerve denoted B(C).
Example. Let C be a category. Then the natural map d(N(C)) → B(C) is a DK equivalence
but not a Reedy equivalence.

But we would like it to.
To this end, we build up the definition of a complete Segal space.
Pushing simplices around yields

Lemma 4.20. If f, g belong to the same connected component of X1 and f is an equivalence,
then g is an equivalence.

Definition 4.21. Given a Segal space X, the space of equivalences Xeq is the subspace of
X1 spanned by the equivalences.

Note that the degeneracy s0 : X0 → X1 carries every object to an equivalence, so it
factors through s : X0 → Xeq.

Definition 4.22. A Segal space X is complete if s is an equivalence.

Now we see how restricting to complete simplicial spaces solves the issue we encountered
above.

Proposition 4.23. For complete Siegel spaces, Reedy equivalence and DK equivalence coin-
cide.

5 March 7

Since we may have guests, here is some quick context. In topology, we care about spaces
up to homotopy equivalence, but just quotienting by homotopies throws away too much
structure, so we don’t have things like (co)limits. One approach is to record the homotopies
giving equivalences, record the homotopy between homotopies, etc. Infinity categories en-
capsulate the notion of higher n-arrows. There are many models of this principle: quasi-
categories, simplicially enriched categories, and complete segal spaces. We took a detour
through model category theory, which encapsulates homotopical data and gave us derived
categories/functors. We also saw DK localization, the underlying infinity categorical notion.
Today, we put all this setup to work.
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5.1 Motivating the ∞-Categorical Yoneda Embedding

The key result for today is the infinity categorical Yoneda lemma. Once we have it, we can
define various key universal constructions: limits, colimits, adjoints.

Recall the conventional (full and faithful) Yoneda embedding:

C → Fun(Cop,Set), B 7→ HomC(−, B)

or equivalently,
Cop × C → Set, (A,B) 7→ HomC(A,B)

To adapt this construction to infinity categories, we need a CSS that will play the part of
Set, which we cal S (will also need an analogue of op).

Constructing a functor
Cop × C → S

will require a lot of coherence data, so we seek to do it non-explicitly. In particular, we will
construct S as a classifying space for a certain kind of functor called a left fibration:

{X left fibration−−−−−−−→ Cop × C} ↔ {Cop × C → S}

Note: from now on C will refer to a CSS, and x ∈ C is an object (element of C0,0) unless
otherwise specified.

5.2 Left Fibrations and the Grothendieck Construction

Recall that we faced some 2-categorical issues when dealing with Cat: composition of func-
tors is generally defined up to natural equivalence, so functors toCat aren’t actually functors.
A resolution is to instead consider functors to Grp as follows. We state the conventional
category version of left fibration first:

A functor f : C → D is a left fibration if

• Any f(x) → d in D lifts to x→ y in C

• Given x
a−→ y and x

b−→ z in C there is a bijection between c and c satisfying

x y f(x) f(y)

z f(z)

a

b c

f(a)

f(b)
c

Equivalently, f : N(C) → N(D) is in RLP({0} → ∆1) and RLP(Λ2
0 → ∆2).

The Grothendieck construction then gives a bijection between such left fibrations and
functors D → Grp. We will skip to the ∞-categorical definitions for CSS.

Definition 5.1. A Reedy fibration f : X → Y in ssSet is a left fibration if the map

Fun(d(∆1), X) → X ×Y Fun(d(∆1), Y )

(induced by {0} → [1]) is a trivial fibration.
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Let’s pause to understand what this means. We have d(∆1)0 = {0, 1} and d(∆1)1 =
{[0, 1]}, so a functor d(∆1) → C is specified by the image of [0, 1] in C1, a space of arrows.
And the image of the projections Fun(d(∆1), C) → C correspond to the source of the arrows.

So we can think of the domain as arrows of X and the codomain as arrows of Y with
source in f(X). And “trivial fibration” corresponds to bijection, in clear analogy with the
conventional case!

Remark. I think we omit the horn filler condition, because those always hold in infinity
categories.

Now here are some basic facts about left fibrations.

Lemma 5.2. Left fibrations are preserved under base change and exponential, and left fibra-
tions preserve CSS.

Our next task is to construct S, the “infinity category of spaces” which will be a classifying
space for left fibrations. We will give a VERY sketchy idea of the construction, so see [2]
7.3.1 for details:

• Sm,n is the set of left fibrations Z → ∆m,n up to isomorphism (set-theoretic modifica-
tions, check functoriality)

• Gluing together these left fibrations yields a universal left fibration E → S

• For any B ∈ ssSet, there is a bijection

Left(B) ↔ Hom(B,S)

given by base change.

• This bijection of sets can be upgraded to an equivalence of CSS, giving both sides the
appropriate structure.

Of course we need to check various properties, etc.

5.3 The ∞-Categorical Yoneda Embedding

Given a CSS, we need to define its opposite.

Definition 5.3. Given C ∈ ssSet mapping ∆op ×∆op → Set, let Cop ∈ ssSet be

∆op ×∆op op×id−−−→ ∆op ×∆op C−→ Set

Thus, note that Cop
n and Cn, but the faces and degeneracies are swapped.

Lemma 5.4. If C is a CSS, then Cop is too.

Next, our goal is to define a left fibration to Cop ×C that will correspond to the Yoneda
map.
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Definition 5.5. Let τ : ∆ → ∆ map [n] 7→ [n]op ⋆ [n]. For any C ∈ ssSet let Tw(C) ∈ ssSet
map

∆op τ−→ ∆op C−→ sSet

Let p : Tw(C) → C×Cop be induced by the natural transformations induced by [n] 7→ [n]op⋆[n]
and [n]op → [n]op ⋆ [n].

Proposition 5.6. p : Tw(C) → C × Cop is a left fibration.

The left fibration Tw(C) → C × Cop induces a map

Ỹ : C × Cop → S

as desired. In particular, we can rewrite this as the Yoneda embedding

Y : C → P (C)

where
P (C) := Fun(Cop,S)

And the corresponding Y (x) → Cop is the left fibration that is the base change

Y (x) Cop

Tw(C) C × Cop

{x}×id

p

The notion of an over category will be useful for proving the analogue of the Yoneda
lemma, and will also be used for defining limits and colimits.

Definition 5.7. Given Reedy fibrant C ∈ ssSet and x ∈ C, define C/x as the fiber

C/x x

Fun(d(∆1), C) C
{1}→[1]

Recall by our earlier examination of the projection map, C/x is the CSS of arrows with
target x, which is what we want!

Observation. • The map

C/x → Fun(d(∆1), C) {0}→[1]−−−−→ C

is a right fibration (this is taking the source).

• So the corresponding (C/x)op → Cop is a left fibration.

• C ∈ CSS =⇒ C/x ∈ CSS (since changing base by left fibration preserves CSS).
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Lemma 5.8. The left fibrations Y (x) → Cop and (C/x)op → Cop and naturally homotopy
equivalent via

Y (x) → (C/x)op, idx 7→ idx

Recall that the category of left fibrations was endowed with CSS structure, so we can
make sense of “homotopy equivalent”.

Now we get the analogue of the Yoneda lemma.

Proposition 5.9. Let F ∈ P (C) and x ∈ C. The natural evaluation map

MapP (C)(Y (x), F ) → F (x)

is an equivalence.

5.4 Limits, Colimits, Adjoints

Now we put the Yoneda lemma (and philosophy) to use. Let’s define colimits, and limits
will be dual.

Definition 5.10. An object x ∈ C is initial if Map(x, y) is contractible for all y ∈ C.

We want initial objects to be unique, but of course we can only expect uniqueness up to
homotopy.

Proposition 5.11. The full subcategory Cinit of initial objects in C is a contractible space
(or empty).

To define more general limits, we define an undercategory.

Definition 5.12. Let f : K → C be a functor between ssSet. Then the undercategory Cf/
is the double fiber product

F ∗

Cf/ Fun(d(∆1)×K, C) Fun(K, C)

C

{f}

{0}→[1],{1}→[1]

K→∗

Lemma 5.13. If C is a Segal space, then Cf/ → C is a left fibration. So C ∈ CSS =⇒ Cf/ ∈
CSS.

Proof. The map Cf/ → C is the base change of

Fun(K, C)/f → Fun(K, C)

which is a left fibration by our observation about undercategories earlier.
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Definition 5.14. Given a functor f : K → C, its colimit is an initial object of the category
Cf/.

Finally, let’s talk about adjunctions. For conventional categories, an adjunction is the
data of

Cop ×D → Set

and L : C → D admits a right adjoint iff for any y ∈ D the functor x 7→ HomD(L(x), y) is
representable.

So for infinity categories (CSS), we expect to want a left fibration to Cop ×D.

Definition 5.15. For C,D ∈ CSS, a correspondence from C to D is a left fibration

p : E → Cop ×D

A correspondence is left-presentable if the base change by each x ∈ C defines a representable
presheaf on Dop, and it is right-presentable if the base change by each y ∈ D defines a
representable presheaf on C

Ex D Ey Cop

E Cop ×D E Cop ×D

x×id id×y

p p

(i.e., the maps Ex → S or Ey → S).
A left fibration pE → Cop × D determines an adjoint pair between C and D if p is both

left and right representable.

And of course we can interpret p as a functor Cop×D → S and then as pC : Cop → P (Dop)
or pD : D → P (C).

Then p is left representable if pC factors through Dop, an d1it is right representable if pC
factors through C.

6 March 21

Unfortunately due to Covid, we are on Zoom today and I am not as well prepared as I’d
hoped. Apologies in advance!

Let’s start by tying together some important concepts that we rushed over or skipped.

6.1 DK localization and Classification Diagrams

Recall that DK localization took a model category (C,W ) and gave a simplicial category
LH(C,W ) (most explicitly via the hammock construction) satisfying

• Arrows of W become equivalences in LH(C,W )

• π0(L
H(C,W )) = C[W−1]
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• A Quillen equivalence of model categories yields an equivalence of DK localizations.

Recall also that C : sSet ↔ sCat : N was a Quillen equivalence (N is the homotopy
coherent nerve).

We can use this to construct the infinity category of spaces, which we mentioned last
time.

Example. Let (C,W ) be sSet with weak homotopy equivalences. Then LH(C,W ) is S, the
simplicial category of Kan simplicial sets with inner Hom for morphism spaces.

Note that S is also N of the simplicial category of Kan simplicial sets.

Recall that we had a Quillen equivalence between sSet and Top (and also that all objects
of Top are fibrant), justifying the name “infinity category of spaces”.

Let us also justify using this term last time:

Proposition 6.1. S classifies left-fibrations (i.e., is equivalent to S from last time).

Proof sketch. The CSS S from last time has a weak equivalence

Left(B) → Fun(B,S)

Letting B = ∗, the right hand side is S, and the left hand side is Left(∗) which is equivalent
to the category of Kan simplicial sets (same lifting condition).

In addition to DK localization, let’s look at another bridge to a model of infinity cate-
gories. In particular, the following classification diagram construction takes a category with
weak equivalences to a CSS. This modifies the Rezk Nerve construction

C 7→ BC ∈ ssSet, BCn = N(Fun([n], C)iso)

Definition 6.2. Given (C,W ), define B(C,W ) ∈ ssSet by

B(C,W )n = N(Fun([n], (C,W )))

where Fun([n], (C,W )) has objects as functors [n] → C and whose arrows are pointwise weak
equivalences of functors.

Note that B(C,W )n,m consists of commutative n × m rectangles whose vertical arrows
belong to W (this is reminiscent of the LH(C,W ) construction!).

This construction by itself is not a CSS, but:

Theorem 6.3. B(C,W )f (Reedy fibrant replacement) is a CSS.

6.2 ∞-localization

Now we will discuss localization of infinity categories via adjoint functors. We will see that
DK localization calculates it.

Let S → Cat∞ be the embedding of the infinity category of spaces into the infinity
category of infinity categories (this can be done in any model, e.g., includingN (Kan) → sCat
or essentially constant CSS into CSS). We want adjoints to this functor.
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Proposition 6.4. There is a right adjoint to this embedding,

Cat∞ → S, C 7→ Ceq

where Ceq is the maximal subspace, obtained by discarding non-equivalences.

Proof idea. Obtained by a Quillen adjunction sSet ↔ (ssSet, CSS). See [2] 8.5.1.

On the other hand, we have:

Proposition 6.5. There is a left adjoint to this embedding,

Cat∞ → S, C 7→ Cf

replacing a quasi-category with its Kan fibrant replacement.

Proof idea. This again comes from a Quillen adjunction, this time on the standard vs. Joyal
model structures on sSet (an example of Bousfield localization). The adjoint is thus the left
derived functor of the identity. Again see [2] 8.5.1.

Now we come to general localization. Consider the functor

K : Cat∞ → Fun(∆1,Cat∞), C 7→ Ceq

(recall that Ceq has discarded all non-equivalences, so we can embed it into the arrow cate-
gory).

Definition 6.6. General localization is the functor

L : Fun(∆1,Cat∞) → Cat∞

left adjoint to K.

We can check that DK localization is a special case of this construction.

6.3 General Infinity Categories

Now that we have explicitly constructed many of the main tools of infinity categories, we will
employ a general language independent of model. Here are the basic points (which should
be familiar by now):

• Let Cat denote the infinity category of infinity categories.

• There is a subcategory S → Cat of spaces. This inclusion has a right adjoint (maximal
subspace) and left adjoint (total localization).

• For C ∈ Cat and any x, y ∈ C, there is a space MapC(x, y) (defined “up to a contractible
space of choices”).

• There is a full subcategory Catconv → Cat of conventional categories.
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• There is a functor Ho : Cat → Catconv defined by

HomHo(C)(x, y) = π0(MapC(x, y))

• An arrow in C is an equivalence if its image in Ho(C) is an isomorphism. A functor
(arrow in C⊣⊔) is an equivalence if it induces equivalences mapping spaces and an
equivalence of homotopy categories.

Next, an example to motivate our next topic, Cocartesian fibrations (as well as left
fibrations from last time). See here and here for details.

Recall from topology that given a (nice) topological space X, there is an equivalence of
categories

[covering spaces Y → X] → Fun(Π1(X) → Set)

(where Π1(X) is the fundamental groupoid, with objects points of X and morphisms homo-
topy classes of paths). This equivalence is given by taking fibers, and it follows by the path
lifting property of covering spaces.

To upgrade this result, instead let X ∈ Kan be an ∞-groupoid. Instead of π1(X), we
look at Ho(X). The result will now say that we have an equivalence

[Kan fibrations Y → X] → Fun(X,S)

with the map again given by taking fibers. This was our result last time! (i.e., functors to
S correspond to left fibrations). The next upgrade will be the following equivalence:

[cocartesian fibrations Y → X] → Fun(X,Cat∞)

We will give this equivalence in a few steps.

6.4 Complete Segal Objects

The first link in our chain of equivalences will involve Complete Segal objects, which we
motivate as follows.

Recall that we have the Yoneda embedding Cat → Fun(Cop,S). We can compose this
with the map Fun(Cop,S) → Fun(∆op,S) defined by restriction along ∆ → C, and we have
the following:

Proposition 6.7. The map Cat → Fun(∆op,S) is a fully faithful embedding.

Proof idea. Morphism spaces are built out of simplices, so any presheaf can be recovered
from values on ∆op.

The image of this embedding will have the additional properties of being complete and
Segal.

Definition 6.8. Let C be an infinity category with finite limits. A simplicial object X ∈
Fun(∆op, C) is Segal if X(∆n) → X(Sp(n)) is an equivalence in C for all n.

Let Seg(S) be the full subcategory spanned by Segal objects.
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This should of course be familiar from our definition of Segal spaces.

Definition 6.9. A simplicial object X ∈ Fun(∆op, C) is a groupoid object if for any [n] =
S ∪ T with S ∩ T = {s},

Xn
∼= X(S)×X({s}) X(T )

Let Grp(C) denote the full subcategory spanned by groupoid objects.

Note that Grp(S) consists of the images of groupoids under the Yoneda embedding,
motivating the definition. Furthermore,

Lemma 6.10. Grp(C) ⊂ Seg(C).

Proof idea. Since Sp(n) consists of gluing [i−1, i]⊔{i} [i, i+1], the map X([n]) → X(Sp(n))
is in fact an isomorphism by inducting on the groupoid condition.

Proposition 6.11. Let C be an infinity category with finite limits. The embedding Grp(C) →
Seg(C) has a right adjoint functor, X 7→ Xeq.

Proof sketch. In the case C = S, we can construct this adjoint explicitly: let Xeq
n be the

subspace of Xn ∼ X(Sp(n)) whose image in the homotopy category is a sequence of isomor-
phisms.

From that, we can construct an adjoint for the case of Fun(Cop,S). And then we can use
the Yoneda embedding (and the fact that it preserves limits).

Definition 6.12. A Segal object X ∈ Fun(Cop,S) is complete if Xeq is essentially constant.
Let CS(C) denote the full category of complete Segal objects.

Now, we have the promised:

Lemma 6.13. The Yoneda embedding

Cat → Fun(∆op,S)

identifies Cat with CS(S).

Proof idea. The idea is to realize Fun(∆op,S) as Reedy fibrant bisimplicial sets and Cat as
the full subcategory of complete segal spaces, which can be shown to be equivalent to the
Yoneda embedding. See [2] 9.4.4 for details.

The following relative version will be our key link.

Lemma 6.14. The equivalence

Fun(B,Fun(∆op, C)) = Fun(∆op,Fun(B, C))

identifies Fun(B,CS(C)) with CS(Fun(B, C)).

Proof idea. Check componentwise.

Corollary 6.15. We have the following chain of equivalences:

Fun(B,Cat) ∼= Fun(B,CS(S)) ∼= CS(Fun(B,S)) ∼= CS(Left(B))

So our next goal is to classify CS(Left(B)).
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6.5 Cocartesian fibrations

There is a rich theory of cocartesian fibrations, of which we unfortunately present less than
the bare minimum (my apologies for being underprepared today).

In what follows, let f : X → B be a morphism in Cat.

Definition 6.16. An arrow a : x → y in X is called f -cocartesian if the following diagram
is cartesian:

Xy/ Xx/

X ×B Bf(y)/ X ×B Bf(x)/

Recall our definition of over-categories in the setting of CSS.

Definition 6.17. An arrow a : b→ c in B admits a cocartesian lifting if for any x ∈ X with
f(x) = b, there exists a cocartesian arrow a : x→ y in X with f(a) = a.

Definition 6.18. A map f : X → B is a cocartesian fibration if for any x ∈ X and any
a : f(x) → b′ it admits a cocartesian lifting of a.

Proposition 6.19 (Grothendieck construction). There is an equivalence G : Coc(B) →
CS(Left(B)) defined by

G(X)n = FunB([n], X)coc

i.e., the left fibration over B defined by the cocartesian arrows in X.

7 March 28

Today we dive into derived algebraic geometry. This talk should be a somewhat fresh start,
so it’s alright if you are not up to speed on the previous material.

7.1 Stable Infinity Categories and Ring Spectra

These ideas came up last semester in the seminar and in Andrew Blumberg’s class, but let’s
refresh our memories.

Definition 7.1. An ∞-category C is stable if

• It has a zero object

• Every morphism has a kernel and a cokernel

• A triangle is exact ⇐⇒ it is coexact

Example. A spectrum is a sequence of pointed spaces {Xi} (in S) together with equivalences
Xi ≃ ΩXi+1 where Ω is the loop space functor X 7→ 0×X 0. The infinity category of spectra
is stable.
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There are various important results to prove, e.g., that the homotopy category of a stable
infinity category is triangulated, with shift given by suspension. But we are interested in
algebraic structures.

Definition 7.2. An associative monoid in an ∞-category C with products is a “special
∆-space”, i.e., a functor A : ∆op → C satisfying

• A0 is a terminal object

• pn : An → (A1)
n induced by Sp(n) → ∆n is an equivalence

Of course, this is reminiscent of Segal spaces!

Remark. The way to think about this definition is that A1 is an algebra object and we have
multiplication

A1 × A1

p−1
2−−→ A2

d1−→ A1

We can check associativity up to homotopy using the face/degeneracy maps identities.

Definition 7.3. A left-module over a monoid in C with products is a functor

F : ∆op × [1] → C

such that

• The simplicial object F |∆op×{1} is an algebra object

• F carries ([n], 0) → ([n], 1) and ({n}, 0) → ([n], 0) to a product diagram

F ([n], 0) ∼= F ([0], 0)× F ([n], 1)

(where [0]
{n}−−→ [n]).

Remark. Again, there is a way to interpret this definition more concretely. The idea is that
F |∆op×{1} is A and F |∆op×{0} is A×M .

More precisely, letM = F ([0], 0) and A be the simplicial (algebra) object An = F ([n], 1).
Thus, we are given F ([n], 0) ∼= An ×M ∼= An1 ×M .

As before, multiplication A× A → A is F ([2], 1) → F ([1], 1) induced by [1]
d1−→ [2]. And

now the action A×M →M is F ([1], 0) → F ([0], 0) induced by [0]
d1−→ [1].

There is one piece of data we have not used: the map 0 → 1 in [1]. It’s image under
F gives a map between simplicial objects F |∆op×{0} → F |∆op×{1}, or A ×M → A. This is
precisely the coherence data making multiplication in A compatible with its action on M .

A naive definition of A∞ ring spectra is to take monoid objects in spectra. Lurie modifies
this to give stronger associativity than just up-to-homotopy.

An E∞-ring spectrum has the additional requirement of homotopy-coherent commuta-
tivity.

One important technical definition:

Definition 7.4. The ∞-category of connective E∞-ring spectra, E∞-algcn, is the full sub-
category of E∞-monoids in the ∞-category of spectra such that πi(R) = 0 for i < 0.
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7.2 Simplicial Commutative Rings

Now we get into our first main construction.
For motivation, consider the following equivalent description of the category CRing of

(ordinary) commutative rings. For R ∈ CRing, consider Hom(−, R) ∈ PSet(Poly), where
PSet(Poly) = Fun(Polyop,Set) and Poly ⊂ CRing is the full subcategory spanned by
Z[T1, ..., Tn].

Fact: R 7→ Hom(−, R) is an equivalence betweenCRing and the subcategory of PSet(Poly)
of presheaves sending finite coproducts to products.

For an ∞-categorical version, we of course replace Set with S.

Definition 7.5. Let SCR denote the ∞-category of simplicial commutative rings, i.e., the
subcategory of PS(Poly) of presheaves sending finite coproducts to products.

Since the Yoneda embedding respects coproducts, we have Poly ↪→ SCR. As before, we
would like a result guaranteeing that we lose nothing by working with this subcategory.

To make this formal, we use the idea of sifted (homotopy) colimits.
Recall that for conventional categories, a category (diagram) D is sifted if colimits of

shape D commute with finite products in Set. That is for any S a finite discrete category,
F : D × S → Set induces a canonical isomorphism

colimd∈D
∏
s∈S

F (d, s) =
∏
s∈S

colimd∈DF (d, s)

And a sifted colimit is a colimit over a sifted diagram.

A diagram is sifted iff D
∆−→ D×D is a cofinal functor, meaning precomposition preserves

colimits.
This latter condition naturally adapts to infinity categories:

Definition 7.6. An ∞-category D is sifted if for any F : D ×D → C,

colim(D ×D
F−→ C) ∼−→ colim(D

∆−→ D ×D
F−→ C)

is a weak equivalence.
A sifted colimit is the colimit of a sifted diagram.

Now we get our desired proposition.

Proposition 7.7. Let C be an ∞ category which admits sifted colimits. Then the Yoneda
embedding Poly ↪→ SCR induces an equivalence of ∞-categories

Funsift(SCR, C) ∼−→ Fun(Poly, C)

where Funsift ⊂ Fun is the full subcategory spanned by functors that commute with sifted
colimits.

This amounts to: “SCR is freely generated by Poly” under sifted colimits.” It follows
from the fact that “SCR is the non-abelian derived category of Poly” and general theory.
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Unpacking what this means: for the conventional category case, we restricted to presheaves
that sent finite coproducts to products. Preserving sifted colimits is a strengthening of that
condition (since products are sifted). It makes sense that the infinity category case condition
would be stricter since it must respect homotopy coherence data.

Now let’s see what a simplicial ring encodes.

Definition 7.8. Give R ∈ SCR, the underlying space is

RS := R(Z[T ]) ∈ S

But there is further structure encoded byPoly. SinceR respects products and Z[T1, ..., Tn] ∼=⊗n
i=1 Z[T ] (this is the product in Poly) we have a map

mult : R×n
S → RS

induced by

R×n
S = R(Z[T ])n ∼= R

(
n⊗
i=1

Z[T ]

)
= R(Z[T1, ..., Tn])

T 7→T1...Tn−−−−−−→ R(Z[T ]) = RS

Likewise, we have a map induced by addition R(Z[T1, ..., Tn])
T 7→T1+...+Tn−−−−−−−−→ R(Z[T ])

add : R×n
S → RS

And since R(Z) = ∗ (since Z⊗ Z ∼= Z) the maps Z[T ] → Z, T 7→ 0, 1 induce

0, 1 : ∗ → RS

Call R ∈ SCR discrete if the presheaf has values in Set ⊂ S. The inclusion CRing ↪→
SCR is an equivalence onto discrete subrings. It has a left adjoint, denoted

R 7→ π0(R)

7.3 Algebras and Modules over a Simplicial Commutative Ring

Algebras are straightforward:

Definition 7.9. Let SCRR be the ∞-category of R-algebras, i.e., A ∈ SCR equipped with
R → A.

For modules, we will use an embedding into ring spectra as follows. Recall that there is
an Eilenberg Maclane functor

CRing → E∞-algcn, R 7→ {K(R, n)}n

this identifies ordinary commutative rings with discrete E∞-ring spectra.
By our equivalence proposition, we obtain a functor of ∞-categories (unique up to con-

tractible choice) that commutes with sifted colimits:

SCR → E∞-algcn, R 7→ RSpt
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Remark. Ω∞(RSpt) = RS .

Definition 7.10. An R-module is a module over the E∞-ring spectrum RSpt.
ModR is the stable symmetric monoidal ∞-category of R-modules, and Modcn

R is the full
subcategory spanned by connective R-modules.

Example. If R is discrete, ModR is canonically equivalent to the derived category of the
abelian category of conventional R-modules.

Definition 7.11. A connective R-module M is flat if M ⊗R N is discrete for any discrete
R-module N .

It is flat if it is flat if M ⊗R N is zero iff N is zero for any connective R-module N .

Now let’s go on a slight tangent to see the relationship between strict and non-strict
models for rings. For any R ∈ SCR, we have an induced functor

SCRR → E∞-algcnRSpt

But this functor is neither fully faithful nor essentially surjective, since our strict definitions
of commutativity and associativity makes SCR a “stricter” category than E∞-alg.

Finally, we note that there is a forgetful functor

SCRR → E∞-algcnRSpt
→ Modcn

RSpt
= Modcn

R

7.4 Derived Schemes

Once again, we recall conventional algebraic geometry in order to motivate the derived case.
And again, it serves well to recast definitions into presheaf categories which we can adapt to
the infinity categorical setting.

For any scheme S ∈ Sch, we have

MapsSch(−, S) ∈ PSet(Sch)

Grothendieck proved that this presheaf satisfies fpqc descent. The condition that every
scheme has an affine Zariski cover implies that CRingop ↪→ Sch induces an equivalences

Shfpqc(CRingop)
≃−→ Shfpqc(Scheme)

Thus, the Yoneda embedding of Sch induces

Sch ↪→ Shfpqc(CRingop)

and we can take this essential immage as an alternative definition of the category of schemes.
Let’s build up these ideas for SCR.
Let’s start with the category we want to refine.

Definition 7.12. A derived prestack is an element of PS(SCRop) = Fun(SCR,S).

Now we want to set up the descent condition. We can define the fpqc pretopology on
SCRop.
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Definition 7.13. A family of homomorphisms (R → Rα)α∈Λ is fpqc covering if:

• Λ is finite

• Each R → Rα is flat (i.e., the underlying R-module of Rα is flat)

• R →
∏

αRα is faithfully flat

Let (R → Rα)α be an fpqc covering family and R̃ =
∏

αRα. Let Č(R/R̃) ∈ Fun(∆,SCR)
be the cosimplicial object defined by

Č(R/R̃)n = R̃⊗R ...⊗R R̃, n+ 1 times

This is the Čech nerve of R → R̃.

Definition 7.14. A derived prestack X satisfies fpqc descent if for all fpqc covering families
(R → Rα)α, the canonical morphism

X (R) → lim
n∈∆

X (Č(R/R̃)n)

is an isomorphism.
A derived stack is a derived prestack satisfying fpqc descent.

Now we can define derived affine schemes. For R ∈ SCR, define the derived prestack
Spec(R) = MapSCR(R,−) ∈ PS(SCRop).

Proposition 7.15. SCR is a derived stack for any R ∈ SCR.

Definition 7.16. An affine derived scheme is a derived stack isomorphic to Spec(R) for
some R ∈ SCR.

To define schemes in general, we need an idea of open immersions. We need an idea of
what it means to be a covering. This will generalize the descent condition earlier. If X → Y
is a morphism of sheaves, define Č(X/Y )• ∈ Fun(∆op,Sh)

Č(X/Y )n = X ×Y ...×Y X n+ 1 times

We say that X → Y is an effective epimorphism if the canonical morphism of sheaves

colimn∈∆opČ(X/Y )n → Y

is an isomorphism.

Definition 7.17. For R,R′ ∈ SCR, R → R′ is locally of finite presentation if the functor

SCR → S, A, 7→ MapsSCRR
(R′, A)

commutes with filtered colimits.

Definition 7.18. Let j : U → X be a morphism of derived stacks.
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• If X = Spec(R) and U = Spec(A), then j is an open immersion if the corresponding
R → A is

– locally of finite presentation

– flat

– epimorphism

• If X = Spec(R) and U is general, j is an open immersion if it is a monomorphism and
there exists a family (Uα → U)α with

– Uα affine

–
∏

α Uα → U is an effective epimorphism

– Each Uα → U → X is an open immersion in the previous sense

• If X and U are general, then j is an open immersion if for any Spec(A) → X ,

U ×X Spec(A) → Spec(A)

is an open immersion in the above sense.

Of course it would be good to check consistency etc. Here’s one handy fact

Lemma 7.19. R → A induces an open immersion iff A⊗R A→ A is invertible.

Note that this is on the nose; recall that we chose a stricter version of infinity-rings.
Now we can get a familiar looking definition of derived schemes.

Definition 7.20. A Zariski cover of a derived stack X is a family of open immersions
(jα : Uα ↪→ X )α and ⊔

α

Uα → X

is an effective epimorphism.
A Zariski cover is affine if each Uα is an affine derived scheme, and X is a derived scheme

if it admits an affine Zariski cover.

Next time we will see derived quasi-coherent sheaves and descent.

8 April 4

8.1 More on Modules over Simplicial Rings

Let’s talk more about modules and clear up some things skipped last time.
First, we provide intuition for modules over a monoid (this will come up again, so might

be worth revisiting). Recall:
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Definition 8.1. A left-module over a monoid in C with products is a functor

F : ∆op × [1] → C

such that

• The simplicial object F |∆op×{1} is an algebra object

• F carries ([n], 0) → ([n], 1) and ({n}, 0) → ([n], 0) to a product diagram

F ([n], 0) ∼= F ([0], 0)× F ([n], 1)

(where [0]
{n}−−→ [n]).

Here is the interpretation:

Remark. Again, there is a way to interpret this definition more concretely. The idea is that
F |∆op×{1} is A and F |∆op×{0} is A×M .

More precisely, letM = F ([0], 0) and A be the simplicial (algebra) object An = F ([n], 1).
Thus, we are given F ([n], 0) ∼= An ×M ∼= An1 ×M .

As before, multiplication A× A → A is F ([2], 1) → F ([1], 1) induced by [1]
d1−→ [2]. And

now the action A×M →M is F ([1], 0) → F ([0], 0) induced by [0]
d1−→ [1].

There is one piece of data we have not used: the map 0 → 1 in [1]. It’s image under
F gives a map between simplicial objects F |∆op×{0} → F |∆op×{1}, or A ×M → A. This is
precisely the coherence data making multiplication in A compatible with its action on M .

Next, we give more detail about flatness of modules over simplicial rings. The following
is (part of) the “Derived Lazard Theorem”. We state it in the generality of A∞-ring spectra:

Proposition 8.2. Let R be a connective A∞-ring spectrum, and let M be a connective left
R-module. The following are equivalent:

• If N is a discrete right R-module, then N ⊗RM is discrete

• The π0R-module π0R⊗RM is discrete and flat (as a conventional module)

Proof sketch. The idea is to show by induction that for any connective R-module N , there
are isomorphisms

Torπ0R0 (πiN, π0M) → πi(N ⊗RM)

Then we get

πi(N ⊗RM) = πi(N ⊗π0R π0R⊗RM) = Torπ0Ri (N, π0R⊗RM)

There are other equivalent conditions; see [4] Theorem 2.5.2 for the full result.
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8.2 Derived Quasi-coherent Sheaves

Let S = Spec(R) be an affine derived scheme. Define the stable∞-category of quasi-coherent
sheaves on S by

Qcoh(S) := ModR

This defines a presheaf of ∞-categories

(DSchaff)op → ∞−Cat

where f : Spec(R′) → Spec(R) induces

f ∗ : ModR → ModR′ , M 7→M ⊗R R
′

To define derived quasi-coherent sheaves in general, we want to take the right Kan extension
along the Yoneda embedding:

DStkop

(DSchaff)op ∞-Cat
Qcoh

Yoneda

This gives,

Definition 8.3. Let X be a derived stack. The stable ∞-category of quasi-coherent shaves
on X is

Qcoh(X ) := lim
S→X

Qcoh(S)

where the limit is taken over all morphisms from S ∈ DSchaff.

To unpack this data, note that F ∈ Qcoh(X) determines:

1. An R-module f ∗(F) for each f : Spec(R) → X

2. For every commutative triangle

Spec(R′) X

Spec(R)

g

f ′

f

an isomorphism g∗(f ∗F) → (f ′)∗F in Qcoh(Spec(R′)).

3. A homotopy coherent system of compatibilities between these isomorphisms

Remark. Actually, the presheaf on DSchaff is valued in symmetric monoidal ∞-categories,
and you can check that the right Kan extension provides a lift (since the forgetful functor
from symmetric monoidal ∞-categories to ∞-categories preserves and detects limits). Thus,
Qcoh(X ) is always canonically symmetric monoidal.
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In the case that X is in particular a derived scheme, we have a slightly nicer description of
quasi-coherent sheaves.

Proposition 8.4. If X ∈ DSch, then

Qcoh(X)
∼−→ lim

U↪→X
Qcoh(U)

where the limit is over all open immersions U → X from U ∈ DSchaff.

Proof. The goal is to reduce to the case thatX is affine, which follows directly from properties
of modules.

The key data we are given is an affine Zariski cover {Xα ↪→ X}α. Since Qcoh was
constructed as a right Kan extension, it sends colimits of derived stacks to limits, so we have

Qcoh(X) = lim
n∈∆

Qcoh(Č(X̃/X)n) = lim
n∈∆

Qcoh(X̃ ×X ...×X X̃)

(we have switched Qcoh with limn∈∆ in the effective epimorphism condition of the Zariski
cover).

Letting U → X be any open immersion from an affine, we have a pull-back Zariski cover
{Uα ↪→ U}α for Uα = Xα ×X U . Thus, we similarly have

Qcoh(U) = lim
n∈∆

Qcoh(Č(Ũ/U)n) = lim
n∈∆

Qcoh(Ũ ×U ...×U Ũ)

Thus, it suffices to show for all n that the following is an equivalence:

Qcoh(Č(X̃/X)n) → lim
U↪→X

Qcoh(Č(X̃/X)n ×X U) = lim
U↪→X

Qcoh(X̃ ×X ...×X X̃ ×X U)

(since X̃ ×X ...×X X̃ ×X U = Ũ ×U ...×U Ũ) which is equivalent to showing that

Qcoh(Č(X̃/X)n)
∼−→ lim

U↪→Č(X̃/X)n

Qcoh(U)

is an equivalence.
We want to say that Č(X̃/X)n = X̃ ×X ... ×X X̃ is affine, but it is the intersection of

affines. Since each Xα is affine, their pairwise intersections are open subschemes in affine
derived schemes, and so are separated. Then they admit affine Zariski covers where each of
the pairwise intersections are affine. This reduces to the affine case.

8.3 Faithfully Flat Descent

Let us recall what a descent datum for classical quasi-coherent sheaves is. The idea is that
we want local data of a sheaf and compatibility conditions so we can glue them together.
We make this precise.

Given a scheme S and a family of morphisms {fi : Si → S}i, a descent datum is (Fi, φij)ij,
where

• Fi is a quasi-coherent sheaf on Si
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• φij : pr
∗
0Fi → pr∗1Fj is an isomorphism of quasi-coherent sheaves on Si ×S Sj

• For every triple i, j, k, the following cocycle condition diagram commutes

pr∗0Fi pr∗2Fk

pr∗1Fj

pr∗01φik

pr∗02φik

pr∗02φjk

There is also a natural notion of morphisms of descent data (see Stacks), making them a
category. We can check that any F ∈ Qcoh(S) defines a descent datum on a family via
pulling back, defining a functor from Qcoh(S) to the category of descent data.

Fixing F ∈ Qcoh(S), we have a trivial descent datum (F , id) on {S id−→ S}, and a
canonical descent datum on {Si → S} by pulling back, called (F|Si

, can).
Now, given any descent datum (Fi, φij), we say it is effective effective if there is some

F ∈ Qcoh(S) such that (Fi, φij) ∼= (F|Si
, can).

The descent condition is then

1. Every descent datum is effective

2. The functor from Qcoh(S) to the category of descent data (with respect to the covering)
is fully faithful

This is nearly the same as positing an equivalence of categories! To generalize this notion to
the derived setting, we make some tweaks

• The descent datum will require much higher coherency than the cocycle condition

• It is not natural to ask for isomorphism

Let us go directly to the statement of fpqc descent for derived quasi-coherent sheaves:

Theorem 8.5. Given a derived scheme S and a fpqc covering family {fα : Sα → S}α, let
S̃ =

∏
α Sα and f : S̃ → S. Then the canonical functor

Qcoh(S) → lim
n∈∆

Qcoh(Č(S̃/S)n)

is an equivalence.

The target object is called the totalization. Recall that Č(S̃/S)n = S̃ ×S ... ×S S̃. We
saw this last time, but let’s take a moment to get some intuition. Given F ∈ Qcoh(S), the
above functor defines:

• in degree 0: an object of Qcoh(S̃), i.e., an object of Qcoh(Sα) for each α

• in degree 1: an object of Qcoh(S̃×S S̃), i.e., an object of Qcoh(Sα×S Sβ) for each α, β

• in higher degree: higher coherence data

Thus, via the coface and codegeneracy maps, the structure of the limit of this cosimplicial
set encapsulates the cocycle condition along with higher compatibility results.

Before we prove this, we build a bit of general theory.
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8.4 Monadicity and the Proof

We now give some background on (co)-monadicity while simultaneously sketching the proof
of fpqc descent for quasi-coherent sheaves.

See HA 4.7 and here for details.

Definition 8.6. Let C be an ∞-category. A monad T on C is an algebra object of Fun(C, C)
(with respect to the composition monoidal structure). Let AlgT (C) be the ∞-category of
(left) T -algebras in C.

Let’s unpack this structure. A monad on C consists of a functor T : C → C with maps
id → T and T ◦ T → T satisfying unit/associativity conditions up to homotopy.

A T -algebra is an algebra object C ∈ C with a structure map T (C) → C comaptible
with the algebra structure on T , again up to coherent homotopy.

Example. An adjunction has a naturally associated monad (and co-monad).

There are of course dual notions of co-monads and co-algebras, which will turn out to be
more relevant in our case.

Observation. The totalization limn∈∆ Qcoh(Č(S̃/S)n) can be identified with the ∞-category
of co-algebras in Qcoh(S̃) over the co-monad associated to the adjunction

f ∗ : Qcoh(S) ↔ Qcoh(S̃) : f∗

Let’s spell this out a bit more. The co-monad is the functor f ∗f∗ : Qcoh(S̃) → Qcoh(S̃).
Given an object in the totalization, we want the degree zero piece, F ∈ Qcoh(S̃), to be the
algebra object. The map F → f ∗f∗F comes from the rest of the structure of the totalization
(need to figure this out).

Now, given an adjunction F : C ↔ D : G with associated monoid T , the left action of
T on G yields a functor G′ : D → AlgT (C) such that G is the composition of G′ with the
forgetful functor AlgT (C) → C.

Thus, the following results implies the desired equivalence.

Theorem 8.7 (Barr-Beck-Lurie). Given a left adjoint F : C → D : G, the induced functor
D → Alg(C) is an equivalence if and only if

• G is conservative (reflects equivalences)

• If V is a G-split simplicial object of D, then V admits a colimit in D that is preserved
by G.

Splitting is a technical condition about general simplicial objects in categories. See Stacks
for the definition.

In our case, the first condition is that f ∗ is conservative, which follows immediately since
f is faithfully flat. The second condition is much more complicated, and relies nontrivially
on the homotopy theory of spectra.
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9 April 11

See website for Kevin Chang’s lecture notes.

10 April 18

Today we dive into the Bhatt paper, which we advertised as one terminus of this seminar.
The appeal of this paper is that it uses infinity-categorical derived algebraic geometry to
prove concrete results about algebraic spaces/schemes.

First we build up a bit more general theory of derived algebraic geometry and provide a
brief introduction to algebraic spaces. Then we present a powerful result giving an equiva-
lence between hom sets and various functor categories. From there we state and outline the
proofs of results related to: formal points, gluing, and products.

10.1 Algebraic Spaces

We say the bare minimum about algebraic spaces. The intuition is that while schemes are
affine schemes glued together in the Zariski topology, algebraic spaces are affine schemes
glued together in the étale topology.

Definition 10.1. Given a scheme S ∈ Schfppf , an algebraic space over S is a presheaf

F : (Sch/S)opfppf → Set

satisfying

1. F is a sheaf

2. F → F × F is representable

3. There exists a scheme U ∈ (Sch/S)fppf and a surjective étale map hU → F

10.2 More Derived Preliminaries

Definition 10.2. Given an algebraic space X, let D(X) be the quasi-coherent derived cate-
gory of X, i.e., the subcategory of complexes of OX-modules whose cohomology sheaves are
quasi-coherent, viewed as a symmetric stable ∞-category.

Recall that a complex E• of O-modules is strictly perfect if E i is zero for all but finitely
any i and each E i is a direct summand of a finite free O-module.

A complex E• of OX modules is perfect if there exists an open covering X =
⋃
Ui and

strictly perfect complexes E•
i of OUi

modules with E•
i → E•

i |Ui
a quasi-isomorphism.

Definition 10.3. Let Dperf(X) ⊂ D(X) be the full subcategory of perfect complexes, i.e.,
objects of D(X) that can be represented by perfect complexes.
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An object is compact if its representable functor commutes with colimits.
An object A is dualizable if it admits a dual object A∨ with evaluation and unit maps

evA : A∨ ⊗ A→ 1, iA : 1 → A⊗ A∨

satisfying the natural identities after passing to the homotopy category.

Lemma 10.4. For an object K ∈ D(X), the following are equivalent: K ∈ Dperf(X), K is
compact, and K is dualizable.

Rough idea of proof: prove for modules over discrete ring R, and then use connectivity
and gluing to generalize.

Lemma 10.5. The Ind(Dperf(X)) = D(X).

Finally, some notation: Fun⊗(−,−) is the category of symmetric monoidal functors,
FunL⊗(−,−) is the category of co-continuous symmetric monoidal functors, FunL⊗,c(−,−) is
the category of co-continuous symmetric monoidal functors preserving compact objects.

10.3 The Equivalence Results

We prove a key theorem, which is the Tannaka duality of the title.

Lemma 10.6. There are natural identifications

Fun⊗(Dperf(X), Dperf(S)) ∼= FunL⊗,c(Dperf(X), Dperf(S)) ∼= FunL⊗(Dperf(X), Dperf(S))

Proof. The first follows from D(X) = Ind(Dperf(X)) (so every functor on left uniquely
induces a co-continuous functor on the right, and every functor on the right restricts to one
on the left).

The second follows because preserving compact objects ⇐⇒ preserving Dperf ⇐⇒
preserving dualizable objects, which is true for all symmetric monoidal functors.

Theorem 10.7. If X and S are qcqs algebraic spaces, then there is an isomorphism

Hom(S,X) ∼= Fun⊗(Dperf(X), Dperf(S))

induced by pullback.

Proof sketch of full faithfulness. Fact: Hom(−, X) and Fun⊗(Dperf(X),−) are stacks for the
Zariski topology, i.e., they satisfy descent. So we can reduce to the case S is affine, meaning
S → X is quasi-affine.

In the affine case, X,S correspond (via Yoneda) to functors CAlgcn → Ŝ (infinity category
of not-necessarily small spaces; set theoretic concern). So we want to show full faithfulness
of

MapFun(CAlgcn,Ŝ)(S,X) = Fun⊗(D(X), D(Y ))

Lurie shows this (see Proposition 3.3.11) with the assumptions that X is quasi-geometric
and D(X) is presentable.

The proof is very homotopy theoretic: show that any pair of points η, η′ ∈ X(R) yield
maps f, f ′ : Y → X for which every QCoh(X)-linear symmetric monoidal transformation
from f ∗ to f ′∗ is an equivalence, and then show homotopy equivalence of homotopy fibers in
a convenient commutative diagram.
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The proof of essential surjectivity is much more involved; we give a sketchier sketch.

Proof sketch of essential surjectivity. The idea is to progressively build étale hypercovers of
X and S by quasi-affine schemes (generalizations of Čech nerve), and a map between them
that is carried to a given F . To show compatibility, we need to prove that F : QAff/X →
QAff/S preserves étale morphisms, finite limits, étale surjections, etc. To do so, construct a
right adjoint G to F and prove various symmetric-monoidal properties.

In the case of schemes, we get underived results.

Theorem 10.8. For qcqs schemes S and X,

Hom(S,X) ≃ FunL⊗(QCoh(X),QCoh(S))

Proof idea. For full faithfulness, take an affine open cover and use the nice properties of j∗
and j∗ for open immersions j.

For essential surjectivity, the affine case is straight forward, and then check that they
glue together.

(See Theorem 3.1).

Corollary 10.9. Let X and S be qcqs schemes. Assume X has enough vector bundles.

Hom(S,X) ≃ FunL⊗(Vect(X),Vect(S))

Proof reference. (See Corollary 3.2)

10.4 Formal Points

Using the previous theory, we obtain the following result, which is the algebrization of a
formal point.

Theorem 10.10. Let X be a qcqs algebraic space, and let A be a ring with an ideal I such
that A is I-adically complete. Then X(A) ∼= limnX(A/In) via the natural map.

We first prove a lemma.

Lemma 10.11. If A = limA/In then DPerf(A) ∼= limDPerf(A/I
n).

Proof sketch. Full faithfulness follows since K ⊗A − commutes with limits, by compactness
of K ∈ Dperf(A) and adjunction. So limK ⊗A A/I

n ∼= K ⊗A (limA/In) ∼= K ⊗A A ∼= K.
For essential surjectivity, given {Kn}n ∈ limDperf(A/I

n) use induction to construct a
representative {Pn}n with Pn a complex of finite projective A/In modules with Pn+1 → Pn
inducing Pn+1/I

n ∼= Pn.

Proof of Theorem. Let {ϵn : Spec(A/In) → X} be a compatible system of maps. These
induce via pullback a compatible system of exact symmetric monoidal functors {DPerf(X) →
limDPerf(A/I

n)}, i.e.,
F : DPerf(X) → limDPerf(A/I

n)

symmetric monoidal. By the lemma, we have F ∈ Fun⊗(DPerf(X), DPerf(A)). By our big
equivalence theorem, there is a unique map ϵ : Spec(A) → X with F ≃ ϵ∗. Since F extends
each ϵ∗n, so ϵ extends each ϵn, providing an inverse.
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We can give a result about colimits of spaces, not just their points.

Proposition 10.12. Let X be a qcqs algebraic space, and let {Xi} be a diagram of qcqs
X-spaces with D(X) ∼= limD(Xi). Then Dperf(X) ∼= limDperf(Xi) and X = colim Xi.

Proof. Duals are computed pointwise in the limit, so dualizable objects correspond to limits
of dualizable objects.

This gives a natural equivalence Dperf(X) → limDperf(Xi) which is symmetric monoidal
and exact, so by our equivalence theorem it corresponds to an equivalenceX → colim Xi.

10.5 Gluing

Now we give a formal gluing result.

Proposition 10.13. Let X be a qcqs algebraic space with constructible closed subspace Z ⊂
X. Let π : Y → X be a qcqs map of algebraic spaces such that π∗ : DZ(X) ≃ Dπ−1(Z)(Y ) is
an equivalence. Let U = X \ Z and V = Y \ π−1(Z). Then

Φ : D(X) → D(Y )×D(V ) D(U)

is an equivalence.

Proof sketch. Objects in D(Y )×D(V )D(U) correspond to (K,L, η) for K ∈ D(Y ), L ∈ D(U)
and η : j∗K ≃ π∗L.

To check full faithfulness, suffices to check locally on X. Applying the projection formula,
suffices to check that the following is a cofiber/fiber sequence

OX
a−→ π∗OY ⊕ j∗OU

b−→ π∗j∗OV

where b is induced by η (this is the ∞-categorical ingredient).
To do so, apply ΓZ(−) ⊕ (−⊗ j∗OU), which is a conservative functor. What you get is

clearly isomorphism/inclusion/projection (using base change and the assumption).
For essential surjectivity, construct inverse

Ψ : D(Y )×D(V ) D(U) → D(X), (K,L, η) 7→ fib (π∗K ⊕ j∗L→ (π ◦ j)∗j∗K)

again using η. Here Ψ is the right adjoint to Φ, and we can check that the unit/counit are
naturally isomorphic to the identity using the given isomorphism.

Corollary 10.14. In the proposition, Φ induces

Dperf(X) → Dperf(Y )×Dperf(V ) Dperf(U), Vect(X) → Vect(Y )×Vect(V ) Vect(U)

and if π is flat, then Φ induces

QCoh(X) → QCoh(Y )×QCoh(V ) QCoh(U)

and

V Y

U X

j

π π

j

is a pushout in qcqs algebraic spaces.
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Proof sketch. The DPerf statement follows from the previous proposition.
The Vect statement follows from showing that the essential image of Vect(S) → D(S) co-

incides with dualizable objects in D≤0
perf(S) for S a qcqs space. Then we show K is connective

iff π∗K and j∗K is connective, which follows from the isomorphism assumption.
For the QCoh statement, use flatness and vanishing cohomology sheaves to show that

the desired restriction exists and gives an equivalence.
And the pushout diagram follows from the previous proposition.

Remark. This proposition/corollary requires ∞-categories; faithfullness fails if we work
with homotopy categories. This is because the homotopy categories forget η, the data of
how objects over Y and U are identified over V .

Example. Consider the following counter example in the case of classical categories.
Let p be prime, and

A = colim

(
Zp[x] → Zp

[
x

p

]
→ Zp

[
x

p2

]
→ ...

)
the ring of germs of bounded algebraic functions at 0 on the p-adic unit disc. Equivalently,
A ⊂ Qp[x] consists of f(x) with f(0) ∈ Zp. Can check that A/pn ∼= Z/pn and Â = Zp. Let

X = Spec(A), Y = Spec(Â), Z = Spec(A/p)

and U, V open complements as before. We will show that

QCoh(X) → QCoh(Y )×QCoh(V ) QCoh(U)

is not faithful.
Let M = A/(x) ∈ QCoh(X). Consider the map

η :M → (M ⊗A Â)⊕M

[
1

p

]
∈ QCoh(Y )×QCoh(V ) QCoh(U)

Note that M ⊗A Â ∼= Zp and M
[
1
p

]
are both p-torsion free, but 0 ̸= x

pn
∈M is p-torsion, so

it must be in the kernel of the map. Considering this as the functor on HomA(A,M) proves
the failure of faithfulness.

10.6 Products

We state and briefly give an idea of the last main result: algebrization of products.

Theorem 10.15. Fix a set I of rings {Ai}i∈I with product A :=
∏

iAi and a qcqs algebraic
space X. Then X(A) ∼=

∏
iX(Ai) via the natural map.

The proof in the case of algebraic spaces is much more difficult than the earlier results,
though it is still based on the equivalence theorem. The proof involves bounding Nisnevich
covers (étale covers admitting sections over a constructible stratification).

The proof for schemes is more elementary, and is based on the non-derived equivalence
result for schemes. It involves more classical scheme theory, but also uses techniques of
bounding numbers of generators.
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