Cayley Graphs of Free Groups

By Giovanni Sanchez

Characterising Trees

Proposition 3.1.10
(Characterising Trees)
A graph is a tree IFF for every pair of vertices there exists exactly one path connecting these vertices

Definition 3.1.11
 (Spanning Trees)

A spanning tree of a graph X is a subgraph of X that is a tree and contains all vertices
of X.
A subgraph of a graph (V, E) is a graph
$\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subset V$ and $E^{\prime} \subset E$

Cayley Graphs

Definition 3.2.1

Let G be a group and $S \subset G$. Then the Cayley graph of G with respect to the generating set S is the graph $\operatorname{Cay}(G, S)$ whose

- Set of vertices is G
- Set of edges is

$$
\left\{\{g, g \square s\} \mid g \in G, s \in\left(S \cup S^{-1}\right) \backslash\{e\}\right\}
$$

That is, two vertices in a Cayley graph are adjacent IFF they differ by right multiplication by an (inverse of an) element of the generating set in question.
By definition, the Cayley graph with respect to a generating set S coincides with the Cayley graphs for S^{-1} and for $S \cup S^{-1}$.

Examples of Cayley Graphs

$\operatorname{Cay}\left(\boldsymbol{Z}^{2},\{(1,0),(0,1)\}\right)$

$\operatorname{Cay}\left(S_{3^{\prime}}\{\tau, \sigma\}\right)$

Cayley Graphs of Free Groups (3.3)

Theorem 3.3.1 Cayley Graphs of Free Groups

Let F be a free group, freely generated by $S \subset F$. Then the corresponding Cayley graph $\operatorname{Cay}(F, S)$ is a tree.

The converse is not generally true

Example

Non-free Groups with Cayley Trees

- Cayley graph Cay(Z/2, [1]) consists of two vertices joined by an edge. An example of a tree, but not a free
group.
- The Cayley graph Cay $(\boldsymbol{Z},\{-1,1\})$ coincides with $\operatorname{Cay}(\boldsymbol{Z},\{1\})$, which is a tree. But $\{-1,1\}$ is not a free generating set of \boldsymbol{Z}.

Cayley Graphs of Free Groups

Theorem 3.3.3 Cayley
 Trees and Free Groups

Let G be a group, let $S \subset G$ be a generating set satisfying $s \square t \neq e \forall s$, t. If the Cayley graph $\operatorname{Cay}(G, S)$ is a tree, then S is a free generating set of G.

In order to dive into a formal proof, we must first describe free groups in terms of reduced words.

We must solve the word problem of G with respect to S.

Free Groups \& Reduced Words

Definition Word

Let S be a set and $F(S)$ be a group freely generated by S. A word w in S is a finite sequence of elements written as

$$
w=s_{1} \ldots s_{n} \text { where } s \in S \cup S^{-1}
$$

We define the length of the word w as n denoted as $|w|=n$. Note that the empty word e is the neutral element whose length $|e|=0$.
The set of all elements $s \in S$ along with their inverses s^{-1} where $s \in S$ compose the alphabet of $F(S)$.

Free Groups \& Reduced Words

Examples of Words

$S \cup S^{-1}=\left\{a, b, c, a^{-1}, b^{-1}, c^{-1}\right\}$

$$
\begin{gathered}
W=a \cdot a^{-1}=\varepsilon \\
W=b \cdot c^{-1} \cdot a \cdot a^{-1} \cdot b^{-1}=b \cdot c^{-1} \cdot b^{-1}
\end{gathered}
$$

$$
F(S)=\mathbf{Z}^{+} \quad S=\{1\} \quad S^{-1}=\{-1\} \quad S \cup S^{-1}=\{-1,1\}
$$

$$
w=e=-1 \cdot 1=0
$$

$$
w=1 \cdot 1-1 \cdot 1 \cdot-1 \cdot 1 \cdot 1=3=1 \cdot 1 \cdot 1
$$

Free Groups \& Reduced Words

Definition 3.3.4
 Reduced Word

Let S be a set, and let $\left(S \cup S^{-1}\right)^{\star}$ be the set of words of S and formal inverses of elements of S.

- Let $n \in \mathbb{N}$ and let $s_{p}, \ldots, s_{n} \in S \cup S^{1}$. The word $s_{1} \ldots S_{n}$ is reduced if

$$
s_{j+1} \neq s_{j}^{-1} \text { and } s_{j+1}^{-1} \neq s_{j}
$$

holds for all $j \in\{1, \ldots, n-1\}$

- We write $F_{\text {red }}(S)$ for the set of reduced words in $\left(S \cup S^{-1}\right)^{*}$

Free Groups \& Reduced Words

Proposition 3.3.5

Free Groups via Reduced Words

Let S be a set

1. The set $F_{\text {red }}(S)$ of reduced words over $S \cup S^{-1}$ forms a group with respect to the composition

$$
\begin{aligned}
& F_{r e d}(S) \times F_{r e d}(S) \rightarrow F_{r e d}(S) \text { given by } \\
&\left(S_{1} \ldots S_{n^{\prime}} S_{n+1} \ldots S_{m}\right) \mapsto\left(S_{1} \ldots S_{n-r} S_{n+1+r} \ldots S_{n+m}\right)
\end{aligned}
$$

where $s_{1} \ldots s_{n}$ and $s_{n+1} \ldots S_{m}$ are in $F_{\text {red }}(S)$ (with $\left.s_{1} \ldots S_{n} \in S \cup S^{-1}\right)$ and

$$
r:=\max \left\{k \in\{0, \ldots, \min (n, m-1)\} \mid \forall j \in\{0, \ldots, k-1\} s_{n-j}=s_{n+1+j}^{-1} \vee s_{n-j}^{-1}=s_{n+1+j}\right\}
$$

IOW, the composition of reduced words is given by

1. Concatenating the words
2. Reducing maximally at the concatenation positions
3. The group $F_{\text {red }}(S)$ is freely generated by S

Free Groups \& Reduced Words

So far, our construction is well-defined. With the composition of two reduced words, we have a word composed in reduced form by construction. In our construction, the empty word ε, itself a reduced word is the neutral element.

Associativity: Let $x, y, z \in F_{r e d}(S)$; we want to show that $(x \cdot y) \cdot z=x \cdot(y \cdot z)$. By definition, when composing two words, we have to remove the maximal reduction area where the two words meet.

If the reduction areas of x, y and y, z have no intersection in y, then clearly $(x \cdot y) \cdot z=x \cdot(y \cdot z)$

Free Groups \& Reduced Words

If the reduction areas of x, y and y, z have a non-trivial intersection $y^{\prime \prime}$ in y, then the equality $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ follows by carefully inspecting the reduction areas in x and z and the neighboring regions; because of the overlap in $y^{\prime \prime}$, we know that $x^{\prime \prime}$ and $z^{\prime \prime}$ coincide (they are both inverse of $y^{\prime \prime}$).

Free Groups \& Reduced Words

Establishing the Presence of the Universal Property

We show that S is a free generating set of $F_{\text {red }}(S)$ by verifying that the universal property is satisfied:

Let H be a group and let $\varphi: S \rightarrow H$ by a map. We can see that the following is a group homomorphism.

$$
\varphi^{\prime}:=\varphi^{\star} \mid F_{\text {red }}(S): F_{\text {red }}(S) \rightarrow H
$$

Clearly, φ ' $\mid S=\varphi$; because S generated $F_{\text {red }}(S)$, it follows that φ^{\prime} is the only such homomorphism. Hence, $F_{\text {red }}(S)$ is freely generated by S.

Free Groups \rightarrow Trees

Proof of Theorem 3.3.1

Cayley Graphs of Free Groups

Suppose F is freely generated by S. By the last proposition, F is isomorphic to $F_{\text {red }}(S)$ via an isomorphism that is the identity on S; we can then assume F is $F_{\text {red }}(S)$.

Let's assume for contradiction that Cay (F, S) contains a cycle $g_{\alpha^{\prime} \ldots g_{n-1}}$ of length n with $n \geq 3$; specifically,

$$
s_{j+1}:=g_{j+1} \cdot g_{j+1}{ }^{-1} \in S \cup S^{-1} \text {, for all } j \in\{0, \ldots, n-2\} \text {, as well as } s_{n}:=g_{0} \cdot g_{n-1}^{-1} \in S \cup S^{-1}
$$

Because the vertices are distinct, the word $s_{0} \ldots s_{n-1}$ is reduced; on the other hand, we obtain

$$
S_{n} \ldots S_{1}=g_{0} \cdot g_{n-1}^{-1} \ldots g_{2} \cdot g_{1}^{-1} g_{1} \cdot g_{0}^{-1}=e=\boldsymbol{\varepsilon}
$$

In $F=F_{\text {red }}(S)$, which is impossible. Therefore, Cay (F, S) cannot contain any cycles, so Cay (F, S) is a tree

Free Groups \rightarrow Trees

Example

Cayley graph of the free group of rank 2

Let S be a set consisting of two different elements a and b. Then the corresponding Cayley graph Cay $(F(S)$, $\{a, b\})$ is a regular tree whose vertices have exactly four neighbors.

Trees \rightarrow Free Groups

Proaf of Theorem 3.3.3

Cayley Trees and Free Groups

Let G be a group and let $S \subset G$ be a generating set satisfying $s \cdot t \neq e \forall s, t \in S$ and s.t. The corresponding Cayley graph $\operatorname{Cay}(G, S)$ is a tree. To show that S is a free generating set of G, we just need to show that G is isomorphic to $F_{\text {red }}(S)$ via an isomorphism that is the identity on S.

Because $F_{\text {red }}(S)$ is freely generated by S, the universal property of free groups provides us with a group homomorphism $\varphi: F_{\text {red }}(S) \rightarrow G$ that is the identity on S. As S generates G, it follows that φ is surjective.
Assume for contradiction that φ is not injective. Let $s_{1} \ldots S_{n} \in F_{\text {red }}(S) \backslash\{\boldsymbol{\varepsilon}\}$ with $s_{p} \ldots, S_{n} \in S \cup S^{-1}$ be an element of minimal length that is mapped to e by φ. We consider:

- Because $\varphi \mid s=$ id $_{s}$ is injective, it follows that $n>1$
- If $n=2$, then it would follow that

$$
e=\varphi\left(s_{1} \cdot s_{2}\right)=\varphi\left(s_{1}\right) \cdot \varphi\left(s_{2}\right)=s_{1} \cdot s_{2}
$$

In G contradicting that $s_{1} \ldots s_{n}$ is reduced and that $s \cdot t \neq e$ in $G \forall s, t \in S$

Trees \rightarrow Free Groups

Proaf of Theorem 3.3.3

Cayley Trees and Free Groups

- If $n \geqslant 3$, we consider the sequence $g_{\sigma^{\prime}}, g_{n-1}$ of elements of G inductively by $g_{0}:=e$ and

$$
g_{j+1}:=g_{j} \cdot s_{j+1}
$$

For all $j \in\{0, \ldots, n-2\}$. The sequence $g_{0, \ldots,}, g_{n-1}$ is a cycle in $\operatorname{Cay}(G, S)$ because by minimality of the word $s_{1} \ldots s_{n^{\prime}}$, the elements $g_{0^{\prime}} \ldots, g_{n-1}$ are distinct; moreover, $\operatorname{Cay}(G, S)$ contains the edges $\left\{g_{0}, g_{1}\right\}, \ldots$, $\left\{g_{n-2}, g_{n-1}\right\}$, and the edge

$$
\begin{aligned}
\left\{g_{n-1}, g_{0}\right\} & =\left\{s_{1} \cdot s_{2} \cdots s_{n-1} e\right\} \\
& =\left\{s_{1} \cdot s_{2} \cdots s_{n-1} s_{1} \cdot s_{2} \cdots s_{n}\right\}
\end{aligned}
$$

However, this contradicts the hypothesis that $\operatorname{Cay}(G, S)$ is a tree.
Hence $\varphi: F_{\text {red }}(S) \rightarrow G$ is injective.

Thank you!

