in the city of new york

Number Theory and Cryptography
Math UN3020
New York, 2023/05/01

Mock Exam

Exercise 1. Prove Bernoulli's inequality, which states that if $x \in \mathbb{R}, x>0$ and $n \in \mathbb{Z}, n>1$, then

$$
(1+x)^{n}>1+n x .
$$

(Hint:) you can try by induction.

Exercise 2. Given integers a, b, c, show that if $a^{2}+b^{2}=c^{2}$, then $3 \mid a b$.
(Hint:) use modular arithmetic.

Exercise 3. Prove that $19 \mid 2^{2^{6 k+2}}+3$ for every integer $k \geq 0$.

Exercise 4. Solve the following system of congruences.

$$
\begin{cases}11 x \equiv 7 & (\bmod 12) \\ 3 x \equiv 3 & (\bmod 20) \\ 2 x \equiv 22 & (\bmod 30)\end{cases}
$$

Exercise 5. Show that for every positive integer n, the number $n^{7}-n$ is divisible by 42 .

Exercise 6. Prove that, if $n>1$ is odd, $\varphi(n)$ does not divide n.

