COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Number Theory and Cryptography
Math UN3020
New York, 2023/04/26
Exercise Sheet 14

Review exercises

Exercise 1. Prove that, for all $n \in \mathbb{Z}, n \geq 0$, we have

$$
3 \mid 2^{2 n+1}+1
$$

Exercise 2. Solve the following equation

$$
x^{21} \equiv 1 \quad(\bmod 31)
$$

Exercise 3. Alice and Bob are exchanging a key using the Diffie-Helmann algorithm. Eve spies their communications. Assume they use $p=47, g=5$. They exchange the numbers $X=38, Y=3$. What is the key k ?

Exercise 4. Use Shor's algorithm to factor the number 7097.
(Hint: 2 has order 345 modulo 7097. 3 has order 1150 modulo 7097.)

Exercise 5. Use Shor's algorithm to factor the number 3551.
(Hint: 2 has order 1716 modulo 3551, 3 has order 572 modulo 3551.)

Exercise 6. Show that, if $p>3$ is a prime, then

$$
p^{2} \equiv 1 \quad(\bmod 24)
$$

(Hint: Use the Chinese remainder theorem, $24=2^{3} 3$.)

Exercise 7. Prove that there exists infinitely many positive integers n such that $4 n^{2}+1$ is divisible both by 17 and 29 .
(Hint:) use modular arithmetic.

