COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK

Number Theory and Cryptography
Math UN3020
New York, 2023/04/19
Exercise Sheet 13
Quadratic congruences and Cryptography

Exercise 1 (15 points). Let p be an odd prime, $p \neq 3$. Similarly to HW12, Exercise 2, determine the values of p such that 5 is a quadratic residue modulo p.

Exercise $2(15$ points). Let p be a prime and assume that $p \equiv 3(\bmod 4)$. Prove that, if a is a quadratic residue modulo p, then the two square roots of a are

$$
\pm a^{(p+1) / 4} .
$$

Exercise 3 (15 points). For an odd prime p, consider the equation

$$
a x^{2}+b x+c=0,
$$

where $a, b, c \in \mathbb{Z}_{p}, a \neq 0$ are the parameters and x is the unknown. Discuss the number of solutions of the equation in \mathbb{Z}_{p}, depending on the parameters a, b, c.
(Hint:) Define $\Delta=b^{2}-4 a c$. The number of solutions depends on $\left(\frac{\Delta}{p}\right)$.

Exercise 4 (15 points). Bob publishes his RSA public key $(N, e)=(1517,7)$. Alice sends him a message, the encrypted message is

$$
515,816,331,200
$$

Determine Bob's private key and decrypt the message.

