COLUMBIA UNIVERSITY in the city of new york

Number Theory and Cryptography
Math UN3020
New York, 2023/04/12

Exercise Sheet 12

Quadratic Reciprocity and Primality Test

Exercise 1 (9 points). Using the quadratic reciprocity, determine whether 66,80 and 122 are squares modulo 127 .

Exercise 2 (10 points). Let p be an odd prime, $p>3$. Prove that 3 is a quadratic residue modulo p if and only if $p \equiv 1$ or $11(\bmod 12)$, and that 3 is a quadratic non-residue modulo p if and only if $p \equiv 5$ or $7(\bmod 12)$. (Hint:) use quadratic reciprocity.

Exercise 3 (8 points). Let n be an integer such that $3 \nless n$, and let p be an odd prime such that $p \mid n^{2}+3$. Prove that

$$
p \equiv 1 \quad(\bmod 3)
$$

(Hint:) First show that

$$
\left(\frac{-3}{p}\right)=\left(\frac{n^{2}}{p}\right)
$$

Exercise 4 (9 points). Prove that there are infinitely many primes congruent to 1 modulo 3 . (Hint:) Use a method similar to Euclid's proof, and the previous exercise.

Exercise 5 (12 points). Use the criterion given in class to verify that the numbers 1105, 1729, 2465 and 2821 are Carmichael numbers.

Exercise 6 (12 points). Use the Miller-Rabin test to show that the following numbers are composite:
(a) 899 .
(b) 3599 .
(c) 427 .
(d) 30227 .

