COLUMBIA UNIVERSITY
 in the city of new york

Number Theory and Cryptography
Math UN3020
New York, 2023/04/05

Exercise Sheet 11

Quadratic Residues

Exercise 1 (11 points). For an integer n, consider the set of positive divisors of n, defined as

$$
\operatorname{Div}_{n}^{+}:=\{d \in \mathbb{Z} \mid d>0 \quad \text { AND } \quad d \mid n\}
$$

Consider the function

$$
\tau(n):=\# \operatorname{Div}_{n}^{+}
$$

Prove that, if m and n are coprime, we have

$$
\tau(m n)=\tau(m) \tau(n)
$$

Exercise 2 (11 points). Let p be a prime, and $b \in \mathbb{Z}$ be such that $\operatorname{gcd}\left(b, p^{\alpha}\right)=p^{s}>1$. Prove that

1. If $b \equiv 0\left(\bmod p^{\alpha}\right)$, then b is a quadratic residue modulo p^{α}.
2. If $b \not \equiv 0 \quad\left(\bmod p^{\alpha}\right)$ and s is odd, then b is not a quadratic residue modulo p^{α}.
3. If $b \not \equiv 0\left(\bmod p^{\alpha}\right)$ and s is even, then b is a quadratic residue modulo p^{α} if and only if $\frac{b}{p^{s}}$ is a quadratic residue modulo p.
(Hint:) Write the binomial equation $x^{2} \equiv b\left(\bmod p^{\alpha}\right)$ and apply the method for the case when b is not invertible.

Exercise $\mathbf{3}$ (16 points). Use Euler's Criterion to determine if the following are quadratic residues:
(a) 2 modulo 31 .
(b) 2 modulo 43 .
(c) 3 modulo 31 .
(d) 7 modulo 29 .

Exercise 4 (11 points). Let n be an even positive integer, and p be a prime such that $p \mid n^{2}+1$. Prove that

$$
p \equiv 1 \quad(\bmod 4) .
$$

(Hint:) First, show that

$$
\left(\frac{-1}{p}\right)=\left(\frac{n^{2}}{p}\right) .
$$

Exercise 5 (11 points). Prove that there are infinitely many primes congruent to 1 modulo 4.
(Hint:) Write a proof similar to Euclid's proof. Use Exercise 4.

