COLUMBIA UNIVERSITY

 IN THE CITY OF NEW YORK

 IN THE CITY OF NEW YORK}

Number Theory and Cryptography
Math UN3020
New York, 2023/03/29
Exercise Sheet 10

Discrete Logarithm

Exercise 1 (15 points). Prove that for integers $n>1$ and $k>1$, we have

$$
\varphi\left(n^{k}\right)=n^{k-1} \varphi(n),
$$

where $\varphi(n)$ is the Euler's totient function:

$$
\varphi(n):=\#\{a \in \mathbb{Z} \mid 1 \leq a \leq n \quad \text { AND } \quad \operatorname{gcd}(a, n)=1\} .
$$

Exercise 2 (15 points). Notice that, when n is an odd number, $n>1$, then $[2] \in \mathbb{Z}_{n}^{*}$. Let f be a function

$$
f:\{n \in \mathbb{N} \mid n \text { odd } \quad \text { AND } \quad n>1\} \quad \longrightarrow \mathbb{N}
$$

defined as follows: $f(n)$ is the order of [2] modulo n.
Prove that, for h, k odd, $h, k>1$, and $\operatorname{gcd}(h, k)=1$, we have

$$
f(h k)=\operatorname{lcm}(f(h), f(k)),
$$

where lcm denotes the least common multiple, defined in HW04, Exercise 4.

Exercise 3 (10 points). Use the baby-steps-giant-steps algorithm to find h, k such that

$$
\begin{aligned}
& 2^{h} \equiv 7 \quad(\bmod 53), \\
& 2^{k} \equiv 9 \quad(\bmod 53)
\end{aligned}
$$

Exercise 4 (20 points). Solve the following congruences.
(a) $x^{5} \equiv 23 \quad(\bmod 71)$.
(b) $x^{3} \equiv 33 \quad(\bmod 61)$.
(c) $x^{4} \equiv 11 \quad(\bmod 89)$.
(d) $x^{8} \equiv 37 \quad(\bmod 73)$.
(Hint:) Note that [7], [2], [3], [5] is a primitive element modulo $71,61,89,73$ respectively.

