COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK

Number Theory and Cryptography
Math UN3020
New York, 2023/03/08

Exercise Sheet 8

Lagrange's Theorem

Exercise 1 (5 points). Solve the following system of congruences.

$$
\begin{cases}2 x \equiv 6 & (\bmod 15) \\ 4 x \equiv 12 & (\bmod 50) \\ x \equiv 3 & (\bmod 10)\end{cases}
$$

Exercise 2 (6 points). For every one of the rings $\mathbb{Z}_{15}, \mathbb{Z}_{14}, \mathbb{Z}_{25}$, write an equation of degree 2 that has more than 2 solutions.

Exercise 3 (5 points). Let $h, k \in \mathbb{Z}$ be coprime integers. Prove that, for every integer $a \in \mathbb{Z}$, we have

$$
\operatorname{gcd}(a, h k)=1 \quad \Leftrightarrow \quad[\operatorname{gcd}(a, h)=1 \quad \text { AND } \quad \operatorname{gcd}(a, k)=1] .
$$

Exercise 4 (4 points). Compute the following values of the totient function:

$$
\varphi(30), \varphi(36), \varphi(100), \varphi(360) .
$$

Exercise 5 (4 points). Compute the order of the following elements of $\mathbb{Z}_{21}:[2],[4],[5],[8]$.

Exercise 6 (5 points). Consider the case when $g=[5] \in \mathbb{Z}_{13}^{*}$. Put the elements of \mathbb{Z}_{13}^{*} into a rectangle, as we did in class during the proof of Lagrange's Theorem.

Exercise 7 (8 points).
(a) Let $g \in \mathbb{Z}_{n}^{*}$ be an element of order 9. What is the order of g^{3} ? What is the order of g^{2} ?
(b) Let $g \in \mathbb{Z}_{n}^{*}$ be an element of order 12 . What is the order of g^{3} ? What is the order of g^{8} ?

Exercise 8 (5 points). Let $g \in \mathbb{Z}_{n}^{*}$ be an element such that $g^{9}=[1]$ and $g^{16}=[1]$. Show that $g=[1]$.

Exercise 9 (6 points).
(a) Find the last two digits of 3^{125}.
(b) Find the last two digits of 3^{9999}.
(c) Find the last three digits of 7^{403}.

Exercise 10 (5 points). Find the last two digits of 2^{9999}.
(Hint:) Note that 2 is NOT coprime with 100. Compute 2^{9999} modulo 25 and 2^{9999} modulo 4.

Exercise 11 (7 points). Show that there exist 2023 consecutive integers, each of which is divisible by a perfect square greater than one.
(Hint:) use the Chinese Remainder Theorem.

