COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Number Theory and Cryptography Math UN3020 New York, 2023/03/08

EXERCISE SHEET 8

Lagrange's Theorem

Exercise 1 (5 points). Solve the following system of congruences.

$2x \equiv 6$	(mod	15)
$4x \equiv 12$	2 (mod	50)
$x \equiv 3$	(mod	10)

Exercise 2 (6 points). For every one of the rings \mathbb{Z}_{15} , \mathbb{Z}_{14} , \mathbb{Z}_{25} , write an equation of degree 2 that has more than 2 solutions.

Exercise 3 (5 points). Let $h, k \in \mathbb{Z}$ be coprime integers. Prove that, for every integer $a \in \mathbb{Z}$, we have

 $gcd(a,hk) = 1 \quad \Leftrightarrow \quad [gcd(a,h) = 1 \quad AND \quad gcd(a,k) = 1].$

Exercise 4 (4 points). Compute the following values of the totient function:

 $\varphi(30), \varphi(36), \varphi(100), \varphi(360)$.

Exercise 5 (4 points). Compute the order of the following elements of \mathbb{Z}_{21} : [2], [4], [5], [8].

Exercise 6 (5 points). Consider the case when $g = [5] \in \mathbb{Z}_{13}^*$. Put the elements of \mathbb{Z}_{13}^* into a rectangle, as we did in class during the proof of Lagrange's Theorem.

Exercise 7 (8 points).

- (a) Let $g \in \mathbb{Z}_n^*$ be an element of order 9. What is the order of g^3 ? What is the order of g^2 ?
- (b) Let $g \in \mathbb{Z}_n^*$ be an element of order 12. What is the order of g^3 ? What is the order of g^8 ?

Exercise 8 (5 points). Let $g \in \mathbb{Z}_n^*$ be an element such that $g^9 = [1]$ and $g^{16} = [1]$. Show that g = [1].

Exercise 9 (6 points).

- (a) Find the last two digits of 3^{125} .
- (b) Find the last two digits of 3^{9999} .
- (c) Find the last three digits of 7^{403} .

Exercise 10 (5 points). Find the last two digits of 2⁹⁹⁹⁹. (Hint:) Note that 2 is NOT coprime with 100. Compute 2⁹⁹⁹⁹ modulo 25 and 2⁹⁹⁹⁹ modulo 4.

Exercise 11 (7 points). Show that there exist 2023 consecutive integers, each of which is divisible by a perfect square greater than one.

(Hint:) use the Chinese Remainder Theorem.