COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Number Theory and Cryptography Math UN3020 New York, 2023/03/01

EXERCISE SHEET 7

Polynomial division

Exercise 1 (8 points). Prove that, for all $n \in \mathbb{N}$,

 $5 \mid (n^5 - n)$.

(Hint:) you may try by induction.

Exercise 2 (9 points). Solve the following systems of congruences.

(a)

$\int x \equiv 6$	$\pmod{10}$
$\int x \equiv 11$	$\pmod{15}$

(b)

	{	$\begin{cases} x \equiv 3 \\ x \equiv 11 \end{cases}$	(mod 21) (mod 14)
(c)	Į	$\begin{cases} x \equiv 10 \\ x \equiv 16 \end{cases}$	(mod 12) (mod 18)

 $x \equiv 10 \pmod{15}$

Exercise 3 (9 points). Compute the quotient and remainder of the polynomial division between the following pairs of polynomials in $\mathbb{Q}[x]$.

(a) $2x^4 - 1$, $x^2 - 2x + 1$. (b) $6x^4 + 3x^2 - 3$, $2x^3 + 1$. (c) $3x^4$, x - 1. **Exercise 4** (9 points). Compute the quotient and remainder of the polynomial division between the following pairs of polynomials in $\mathbb{Z}_{13}[x]$.

- (a) $[2]x^4 [1], [3]x^2 [2]x + [1].$
- (b) $[6]x^4 + [3]x^2 [3], [5]x^3 + [1].$
- (c) $[3]x^4, [2]x [1].$

Exercise 5 (8 points). Prove that, for every $n \ge 1$, the numbers $n^4 + 3n^2 + 1$ and $n^3 + 2n$ are coprime.

Exercise 6 (8 points). Let p(x) be a polynomial with integer coefficients

$$p(x) = a_n x^n + \dots + a_0 \,,$$

where $a_i \in \mathbb{Z}$ and $a_n \neq 0$. Let $\frac{s}{t} \in \mathbb{Q}$ be a rational root of p(x), where we assume that gcd(s,t) = 1. Prove that s, t satisfy the following condition:

 $s \mid a_0$ AND $t \mid a_n$.

(Hint:) Write explicitly the condition $p(\frac{s}{t}) = 0$. Multiply it by t^n .

Exercise 7 (9 points). Find all the real solutions to the following equations.

- (a) $x^3 6x^2 + 9x 2 = 0.$
- (b) $3x^4 x^3 6x + 2 = 0.$
- (c) $2x^5 + x^4 8x^3 4x^2 + 8x + 4 = 0.$

(Hint:) First, find one rational solution, by try-and-error. Exercise 6 restricts the search.