IN THE CITY OF NEW YORK

Number Theory and Cryptography
Math UN3020
New York, 2023/03/01

Exercise Sheet 7

Polynomial division

Exercise 1 (8 points). Prove that, for all $n \in \mathbb{N}$,

$$
5 \mid\left(n^{5}-n\right) .
$$

(Hint:) you may try by induction.

Exercise 2 (9 points). Solve the following systems of congruences.
(a)

$$
\left\{\begin{array}{l}
x \equiv 6 \\
x \equiv 11
\end{array} \quad(\bmod 10)\right.
$$

(b)

$$
\left\{\begin{array}{l}
x \equiv 3 \\
x \equiv 11 \quad(\bmod 21) \\
(\bmod 14)
\end{array}\right.
$$

(c)

$$
\begin{cases}x \equiv 10 & (\bmod 12) \\ x \equiv 16 & (\bmod 18) \\ x \equiv 10 & (\bmod 15)\end{cases}
$$

Exercise 3 (9 points). Compute the quotient and remainder of the polynomial division between the following pairs of polynomials in $\mathbb{Q}[x]$.
(a) $2 x^{4}-1, x^{2}-2 x+1$.
(b) $6 x^{4}+3 x^{2}-3,2 x^{3}+1$.
(c) $3 x^{4}, x-1$.

Exercise 4 (9 points). Compute the quotient and remainder of the polynomial division between the following pairs of polynomials in $\mathbb{Z}_{13}[x]$.
(a) $[2] x^{4}-[1],[3] x^{2}-[2] x+[1]$.
(b) $[6] x^{4}+[3] x^{2}-[3],[5] x^{3}+[1]$.
(c) $[3] x^{4},[2] x-[1]$.

Exercise 5 (8 points). Prove that, for every $n \geq 1$, the numbers $n^{4}+3 n^{2}+1$ and $n^{3}+2 n$ are coprime.

Exercise 6 (8 points). Let $p(x)$ be a polynomial with integer coefficients

$$
p(x)=a_{n} x^{n}+\cdots+a_{0},
$$

where $a_{i} \in \mathbb{Z}$ and $a_{n} \neq 0$. Let $\frac{s}{t} \in \mathbb{Q}$ be a rational root of $p(x)$, where we assume that $\operatorname{gcd}(s, t)=1$. Prove that s, t satisfy the following condition:

$$
s \mid a_{0} \quad \text { AND } \quad t \mid a_{n}
$$

(Hint:) Write explicitly the condition $p\left(\frac{s}{t}\right)=0$. Multiply it by t^{n}.

Exercise 7 (9 points). Find all the real solutions to the following equations.
(a) $x^{3}-6 x^{2}+9 x-2=0$.
(b) $3 x^{4}-x^{3}-6 x+2=0$.
(c) $2 x^{5}+x^{4}-8 x^{3}-4 x^{2}+8 x+4=0$.
(Hint:) First, find one rational solution, by try-and-error. Exercise 6 restricts the search.

