IN THE CITY OF NEW YORK
Number Theory and Cryptography
Math UN3020
New York, 2023/02/15

Exercise Sheet 5

Modular Arithmetic

Exercise 1 (7 points). Prove that every positive integer n can be written as a sum of distinct powers of 2, i.e. that for all $n>0$, there exist integers $0 \leq i_{1}<\cdots<i_{h}$ such that

$$
n=2^{i_{1}}+\cdots+2^{i_{h}} .
$$

(Hint: use strong induction. In the inductive step, in order to prove the statement for a number n, consider the largest power of 2 that is smaller or equal to n. Don't forget to check that the powers of 2 you construct are all distinct.)

Exercise 2 (7 points). Consider the triple ([$-2,2]$, min, max), where $[-2,2] \subset \mathbb{R}$ is an interval of real numbers, and min and max are operations on two numbers, respectively taking the minimum and the maximum of two given numbers.

Is $([-2,2], \min , \max)$ a ring? More precisely, show that $([-2,2]$, min, max) respects properties (1), (2), (3), (5) in the definition of a ring, but that it does not respect property (4).

Exercise 3 (7 points). In our definition of a ring, we required that $0 \neq 1$, i.e. that the additive identity and the multiplicative identity are distinct. Why did we make this assumption?

More precisely, consider $(X,+, \cdot)$, a set with two operations that satisfying Property (1), (2), (4), (5) in the definition of a ring, but does not satisfy (3), i.e. in this X we have $0=1$. How many elements can X have?

Exercise 4 (6 points). Prove that, in a ring $(R,+, \cdot)$, if $a, b \in R^{*}$, then $a b \in R^{*}$.

Exercise 5 (7 points). Prove that, in a ring $(R,+, \cdot)$,

$$
\forall a \in R, a \cdot 0=0
$$

(Hint: use distributivity.)

Exercise 6 (6 points). Given a fixed $n \in \mathbb{N}, n>1$, prove that $a \equiv b(\bmod n)$ if and only if a and b give the same remainder when divided by n.

Exercise 7 (8 points). Given a fixed $n \in \mathbb{N}, n>1$, prove that, if $a_{1} \equiv a_{2}(\bmod n)$ and $b_{1} \equiv b_{2} \quad(\bmod n)$, then
(a) $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod n)$.
(b) $a_{1} b_{1} \equiv a_{2} b_{2} \quad(\bmod n)$.

Exercise 8 (6 points). List the elements of \mathbb{Z}_{16}^{*} and \mathbb{Z}_{18}^{*}.

Exercise 9 (6 points).
(a) Compute the multiplicative inverse of 131 modulo 1979.
(b) Compute the multiplicative inverse of 127 modulo 1091.
(Hint: write the corresponding Diophantine equation, as we did in class, then find a solution computing the Bézout identity.)

