COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK

Number Theory and Cryptography
Math UN3020
New York, 2023/02/08

Exercise Sheet 4

Factorization

Exercise 1 (8 points). Prove that for all $n \in \mathbb{N}$,

$$
5 \mid\left(11^{n}-6\right)
$$

(Hint: you can try by induction.)

Exercise 2 (8 points). Assume $d=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ and $n=p_{1}^{b_{1}} \ldots p_{k}^{b_{k}}$, where p_{1}, \ldots, p_{k} are distinct primes and $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \geq 0$. Prove that $d \mid n$ if and only if for every $i, a_{i} \leq b_{i}$.

Exercise 3 (8 points). Assume $m=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ and $n=p_{1}^{b_{1}} \ldots p_{k}^{b_{k}}$, where p_{1}, \ldots, p_{k} are distinct primes and $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \geq 0$. Express $\operatorname{gcd}(m, n)$ as $p_{1}^{c_{1}} \ldots p_{k}^{c_{k}}$ by describing the c_{i} 's in terms of the a_{i} 's and b_{i} 's.

Exercise 4 (8 points). Define the least common multiple of positive integers m, n to be

$$
\operatorname{lcm}(m, n)=\min \{v \in \mathbb{N} \backslash\{0\} \quad|\quad m| v \quad \text { AND } \quad n \mid v\} .
$$

Express $\operatorname{lcm}(m, n)$ in terms of the factorization of m and n given in Exercise 3, and prove that

$$
\operatorname{lcm}(m, n)=\frac{m n}{\operatorname{gcd}(m, n)}
$$

Exercise 5 (8 points). If p is a prime, prove that one cannot find non-zero integers a, b such that

$$
a^{2}=p b^{2}
$$

Then, prove that $\sqrt{p} \notin \mathbb{Q}$.

Exercise 6 (12 points). Prove the following statements.
(a) Every odd natural number is either of the form $4 n+1$ or of the form $4 n+3$, for some $n \in \mathbb{N}$.
(b) Every odd number of the form $4 n+3$ has at least a prime factor of the form $4 n+3$.
(c) There is an infinite number of primes of the form $4 n+3$.

Exercise 7 (8 points). The numbers 3992003 and 1340939 are each products of two close primes. Find the primes.

