COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Number Theory and Cryptography Math UN3020 New York, 2023/02/08

EXERCISE SHEET 4

Factorization

Exercise 1 (8 points). Prove that for all $n \in \mathbb{N}$,

 $5|(11^n-6).$

(Hint: you can try by induction.)

Exercise 2 (8 points). Assume $d = p_1^{a_1} \dots p_k^{a_k}$ and $n = p_1^{b_1} \dots p_k^{b_k}$, where p_1, \dots, p_k are distinct primes and $a_1, \dots, a_k, b_1, \dots, b_k \ge 0$. Prove that $d \mid n$ if and only if for every $i, a_i \le b_i$.

Exercise 3 (8 points). Assume $m = p_1^{a_1} \dots p_k^{a_k}$ and $n = p_1^{b_1} \dots p_k^{b_k}$, where p_1, \dots, p_k are distinct primes and $a_1, \dots, a_k, b_1, \dots, b_k \ge 0$. Express gcd(m, n) as $p_1^{c_1} \dots p_k^{c_k}$ by describing the c_i 's in terms of the a_i 's and b_i 's.

Exercise 4 (8 points). Define the least common multiple of positive integers m, n to be

 $\operatorname{lcm}(m,n) = \min\{ v \in \mathbb{N} \setminus \{0\} \mid m \mid v \quad \text{AND} \quad n \mid v \}.$

Express lcm(m, n) in terms of the factorization of m and n given in Exercise 3, and prove that

$$\operatorname{lcm}(m,n) = \frac{mn}{\operatorname{gcd}(m,n)}.$$

Exercise 5 (8 points). If p is a prime, prove that one cannot find non-zero integers a, b such that

 $a^2 = pb^2.$

Then, prove that $\sqrt{p} \notin \mathbb{Q}$.

Exercise 6 (12 points). Prove the following statements.

- (a) Every odd natural number is either of the form 4n + 1 or of the form 4n + 3, for some $n \in \mathbb{N}$.
- (b) Every odd number of the form 4n + 3 has at least a prime factor of the form 4n + 3.
- (c) There is an infinite number of primes of the form 4n + 3.

Exercise 7 (8 points). The numbers 3992003 and 1340939 are each products of two close primes. Find the primes.