COLUMBIA UNIVERSITY in the city of new york

Number Theory and Cryptography
Math UN3020
New York, 2023/02/01

Exercise Sheet 3

Primes

Exercise 1 (6 points). Prove that, for all $n \in \mathbb{N}$,

$$
\sum_{i=0}^{2 n} i^{2}=\frac{n(2 n+1)(4 n+1)}{3}
$$

Exercise 2 (6 points). Prove that, for all $n \in \mathbb{N}$ with $n \geq 7$,

$$
n!>3^{n}
$$

Exercise 3 (6 points). Consider the sequence of real numbers defined by induction by the relations

$$
\left\{\begin{array}{c}
x_{1}=1 \\
x_{n+1}=\sqrt{1+2 x_{n}}
\end{array}\right.
$$

Prove that for all $n \in \mathbb{N}$ with $n \geq 1$, we have

$$
x_{n}<4
$$

Exercise 4 (9 points.). Find all the solutions to each of the following Diophantine equations.
(a) $305 x+145 y=5$.
(b) $427 x+259 y=13$.
(c) $1084 x+412 y=12$.

Exercise 5 (6 points). Use the Sieve of Eratosthenes to determine all primes less than 100.

Exercise 6 (6 points.). Given $a, b \in \mathbb{Z}$, define

$$
a^{\prime}:=\frac{a}{\operatorname{gcd}(a, b)}, \quad \quad b^{\prime}:=\frac{b}{\operatorname{gcd}(a, b)} .
$$

Show that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.

Exercise 7 (6 points). To check that a given integer $n>1$ is a prime, prove that it is enough to show that n is not divisible by any prime p with $p \leq \sqrt{n}$.

Exercise 8 (9 points). Check whether the following numbers are prime.
(a) 301 .
(b) 473 .
(c) 1001 .

Exercise 9 (6 points). Let a and b two positive integers such that $a+b$ is a prime number. Prove that

$$
\operatorname{gcd}(a, b)=1
$$

