COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK

Number Theory and Cryptography
Math UN3020
New York, 2023/01/25

Exercise Sheet 2

Euclidean algorithm

Exercise 1 (12 points). Prove the following properties of the divisibility relation.
(a) $\forall n \in \mathbb{Z}, 1 \mid n$.
(b) $\forall d \in \mathbb{Z} \backslash\{0\}, d \mid 0$.
(c) If $d \mid n$ and $n \mid q$, then $d \mid q$.
(d) If $d \mid n$ and $d \mid q$, then $\forall s, t \in \mathbb{Z}, d \mid(s n+t q)$.
(e) $d \mid 1 \Leftrightarrow d= \pm 1$.
(f) If $d \mid n$ and $n \mid d$, then $d= \pm n$.

Definition 1. An operation on a set X is a function

$$
*: X \times X \ni(a, b) \rightarrow a * b \in X, .
$$

In other words, an operation on X is a function that takes in input two elements $a, b \in X$, and gives as output one element of X, denoted by $a * b$.

An operation $*$ on X is said to be associative if

$$
\forall a, b, c \in X, \quad(a * b) * c=a *(b * c) .
$$

An operation $*$ on X is said to be commutative if

$$
\forall a, b \in X, \quad a * b=b * a
$$

An identity for X is an element id $\in X$ such that

$$
\forall a \in X, \quad a * \mathrm{id}=\mathrm{id} * a=a .
$$

If the operation $*$ has an identity id, an inverse of an element $a \in X$ is an element $b \in X$ such that

$$
a * b=b * a=\mathrm{id} .
$$

Exercise 2 (5 points). Let $(X, *)$ be a set with an operation $*: X \times X \rightarrow X$. Assume that the operation is associative. Prove that if an identity element for $*$ exists in X, then it is unique. (Hint: proceed by contradiction. Assume that there are two distinct identity elements for $*$, give them names. Compute something using $*$, and find a contradiction.)

Exercise 3 (5 points). Let $(X, *)$ be a set with an operation $*: X \times X \rightarrow X$. Assume that the operation is associative and admits an identity element id $\in X$. Consider an element $a \in X$. Prove that if an inverse of a for $*$ exists in X, then it is unique.
(Hint: proceed by contradiction. Assume that there are two distinct inverse elements of a, give them names. Compute something using $*$, and find a contradiction.)

Exercise 4 (8 points). Compute the quotient and remainder of the Euclidean division between the following pairs of numbers:
(a) 25,4 .
(b) 28,6 .
(c) $-28,6$.
(d) $-14,3$.

Exercise 5 (6 points). Write all the elements of Div_{n}, the set of divisors of n, where n is one of the following numbers:
(a) 11 .
(b) 18 .
(c) 24 .

Exercise 6 (8 points). Find $\operatorname{gcd}(a, b)$ and express it as a linear combination of a, b (i.e. write $\operatorname{gcd}(a, b)=s a+t b$ with $s, t \in \mathbb{Z})$ for the following pairs of numbers.
(a) $a=116, b=-84$.
(b) $a=85, b=65$.
(c) $a=72, b=26$.
(d) $a=72, b=25$.

Exercise 7 (8 points). Given two numbers $a, b \in \mathbb{Z}$. Consider the set of their linear combinations:

$$
L_{a, b}=\{n \in \mathbb{Z} \mid \exists s, t \in \mathbb{Z} \text { s.t. } n=s a+t b\}=\{s a+t b \mid s, t \in \mathbb{Z}\}
$$

Prove that

$$
L_{a, b}=\{n \in \mathbb{Z}|\operatorname{gcd}(a, b)| n\}
$$

Exercise 8 (8 points).
(a) You have a 3-gallon and a 5-gallon jug that you can fill multiple times from a tap. The problem is to measure exactly 4 gallons of water. How do you do it?
(b) You have a 9-gallon and a 12-gallon jug that you can fill multiple times from a tap. The problem is to measure exactly 4 gallons of water. Prove that you cannot do it.

