Exercise 1. For every one of the following functions \(f(x) \), find the intervals on which \(f \) is increasing or decreasing, the local maxima and minima, the intervals of concavity and the inflection points.

(a) \(f(x) = 2x^3 - 9x^2 + 12x - 3 \).

(b) \(f(x) = \frac{x}{x^2 + 1} \).

(c) \(f(x) = (\cos x)^2 - 2\sin x \), defined on \([0, 2\pi]\).

(d) \(f(x) = x^2 \ln x \).

(e) \(f(x) = x^4 e^{-x} \).

(f) \(f(x) = 5x^{2/3} - 2x^{5/3} \).

(g) \(f(x) = \ln(x^2 + 9) \).

Exercise 2. Draw the graph of the following functions. Consider also the intervals of concavity and the inflection points.

(a) \(f(x) = \frac{x^2 - 4}{x^2 + 4} \).

(b) \(f(x) = \frac{e^x}{1 - e^x} \).

(c) \(f(x) = x - \frac{1}{6}x^2 - \frac{3}{2} \ln x \).

(d) \(f(x) = e^{\arctan x} \).