Exercise 1. For each of the following functions, find the domain and the range. Determine whether the function is 1-1 and, in the affirmative case, find the inverse.

(a) \(f(x) = \frac{1}{1 - \tan x} \).

(b) \(f(x) = \sqrt{3 - x} + x \).

(c) \(f(x) = \sqrt{4 - x^2} \).

(d) \(f(x) = \frac{1}{\sqrt{x - 1}} \).

Exercise 2. (Trigonometric functions) Prove the following trigonometric identities.

(a) \(1 + (\tan \theta)^2 = (\sec \theta)^2 \).

(b) \(1 + (\cot \theta)^2 = (\csc \theta)^2 \).

(c) \(\tan(\frac{\pi}{2} - \theta) = \cot \theta \).

(d) \(\csc(\frac{\pi}{2} - \theta) = \sec \theta \).

(e) \(\sin(\arccos x) = \sqrt{1 - x^2} \).
 (Hint: denote \(\theta = \arccos x \), and use the relation \((\cos \theta)^2 + (\sin \theta)^2 = 1\).)

(f) \(\arcsin x + \arccos x = \frac{\pi}{2} \).

Exercise 3. (Hyperbolic functions) Consider the functions

\[
\cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2},
\]
called hyperbolic cosine and hyperbolic sine.

(a) Prove that \(\sinh x = \frac{e^{2x} - 1}{2e^x} \) and \(\cosh x = \frac{e^{2x} + 1}{2e^x} \).

(b) Prove that \((\cosh x)^2 - (\sinh x)^2 = 1 \).

(c) Prove that \(\cosh x \) is even and \(\sinh x \) is odd. Write \(e^x \) and \(e^{-x} \) as a sum of an even and an odd function.

(d) Prove that \(\sinh x \) is 1-1, find the range and the inverse function, denoted by \(\text{arsinh} \).

(e) Find the range of \(\cosh x \), and verify that it is not 1-1.