COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Intro to Modern Algebra I Math GU4041 New York, 2021/04/07

EXERCISE SHEET 12

Sylow's theorem

Exercise 1. Let G be a group and H < G. If $a \in G$, then $aHa^{-1} < G$ is a conjugate subgroup of H in G. The set of conjugate subgroups is

$$\operatorname{Conj}(H) = \{ aHa^{-1} \mid a \in G \}.$$

Recall that N(H) is the normalizer of H, from HW11, Exercise 3.

- (a) Prove that $aHa^{-1} = bHb^{-1}$ if and only if $b^{-1}a \in N(H)$.
- (b) Prove that, if $[G:N(H)] < \infty$, then

$$#\operatorname{Conj}(H) = [G: N(H)].$$

(c) Prove that, if $[G:H] < \infty$, then

$$#Conj(H) \mid [G:H].$$

Exercise 2. Find the Sylow subgroups of $\mathfrak{S}_3 \times \mathfrak{S}_3$.

Exercise 3. Find a 2-Sylow subgroup of \mathfrak{S}_5 . Then show that $n_2 = 15$.

Exercise 4. Find the Sylow subgroups of D_{12} .

Exercise 5. Prove that for every odd prime p that divides n, the Dyhedral group D_{2n} has a normal cyclic p-Sylow subgroup.

Exercise 6.

- (a) Prove that a group of order 40 has a nontrivial normal subgroup.
- (b) Prove that a group of order 56 has a nontrivial normal subgroup.
- (c) Prove that a group of order 8p, where p is a prime, p > 7 has a nontrivial normal subgroup.

Exercise 7. Let G be a group of order pqr, where p < q < r are primes. Prove that G has a normal Sylow subgroup.