COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK

Intro to Modern Algebra I
Math GU4041
New York, 2021/03/24

Exercise Sheet 10

Finite groups

Exercise 1 (Conjugation of permutations). Let $k, n \in \mathbb{N}, k \geq 3$ and odd, and $n \geq k$. Prove that, if $n \geq k+2$, then every two k-cycles in the alternating group A_{n} are conjugate. Find an example of two 3 -cycles in A_{4} that are not conjugate.
(Hint: Before starting, review Homework 09, Exercise 1.)
Exercise 2. For $n \in \mathbb{N}, n \geq 1$, consider the set

$$
U_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\} \subset \mathbb{C} \backslash\{0\}
$$

Prove that U_{n} is a subgroup of $\mathbb{C} \backslash\{0\}$.
Consider the group homomorphism

$$
\varphi: \mathbb{R} \ni \theta \longrightarrow e^{i 2 \pi \theta / n} \in \mathbb{C} \backslash\{0\}
$$

Use the restriction of φ to \mathbb{Z} to describe the structure of U_{n}.
The group U_{n} is called the group of roots of unity.
Exercise 3. Consider $D_{2 n}$, the dihedral group (defined in class). Compute $Z\left(D_{2 n}\right)$.
Exercise 4. Let G be a group, and $H<G$ a subgroup such that $[G: H]=2$. Prove that $H \triangleleft G$.

Exercise 5. Let $G=\mathbb{Z}_{n}$. Describe the set

$$
\left\{[k] \in \mathbb{Z}_{n} \mid\langle[k]\rangle=\mathbb{Z}_{n}\right\} .
$$

of all elements that generate \mathbb{Z}_{n}.

Exercise 6. Solve the following equations
(a) $x^{13} \equiv 2 \quad(\bmod 17)$.
(b) $x^{99} \equiv 2 \quad(\bmod 20)$.

Exercise 7. Let G be a non-Abelian group. Prove that $G / Z(G)$ is not cyclic.

