COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Intro to Modern Algebra I Math GU4041 New York, 2021/03/24

EXERCISE SHEET 10

Finite groups

Exercise 1 (Conjugation of permutations). Let $k, n \in \mathbb{N}, k \geq 3$ and odd, and $n \geq k$. Prove that, if $n \geq k+2$, then every two k-cycles in the alternating group A_n are conjugate. Find an example of two 3-cycles in A_4 that are not conjugate. (Hint: Before starting, raview Homework 00, Exercise 1.)

(Hint: Before starting, review Homework 09, Exercise 1.)

Exercise 2. For $n \in \mathbb{N}$, $n \ge 1$, consider the set

$$U_n = \{ z \in \mathbb{C} \mid z^n = 1 \} \subset \mathbb{C} \setminus \{0\}.$$

Prove that U_n is a subgroup of $\mathbb{C} \setminus \{0\}$.

Consider the group homomorphism

$$\varphi: \mathbb{R} \ni \theta \longrightarrow e^{i2\pi\theta/n} \in \mathbb{C} \setminus \{0\}.$$

Use the restriction of φ to \mathbb{Z} to describe the structure of U_n .

The group U_n is called the group of roots of unity.

Exercise 3. Consider D_{2n} , the dihedral group (defined in class). Compute $Z(D_{2n})$.

Exercise 4. Let G be a group, and H < G a subgroup such that [G : H] = 2. Prove that $H \triangleleft G$.

Exercise 5. Let $G = \mathbb{Z}_n$. Describe the set

$$\{ [k] \in \mathbb{Z}_n \mid \langle [k] \rangle = \mathbb{Z}_n \}.$$

of all elements that generate \mathbb{Z}_n .

Exercise 6. Solve the following equations

- (a) $x^{13} \equiv 2 \pmod{17}$.
- (b) $x^{99} \equiv 2 \pmod{20}$.

Exercise 7. Let G be a non-Abelian group. Prove that G/Z(G) is not cyclic.