COLUMBIA UNIVERSITY

Intro to Modern Algebra I Math GU4041 New York, 2021/03/10

EXERCISE SHEET 8

Products and quotients

Exercise 1. Consider the subset

$$SL^{\pm}(n,\mathbb{R}) = \{ A \in GL(n,\mathbb{R}) \mid \det(A) = \pm 1 \} \subset GL(n,\mathbb{R}).$$

(a) Prove that

$$SL^{\pm}(n,\mathbb{R}) \lhd GL(n,\mathbb{R})$$

(b) Prove that for all $n \ge 1$,

 $GL(n,\mathbb{R}) \simeq SL^{\pm}(n,\mathbb{R}) \times (\mathbb{R}_{>0},\cdot).$

(c) If n is odd, prove that

$$GL(n,\mathbb{R}) \simeq SL(n,\mathbb{R}) \times (\mathbb{R} \setminus \{0\}, \cdot).$$

Exercise 2. Prove that

 $[G,G] \lhd G,$

where [G, G] is the commutator subgroup of G.

Exercise 3. Prove the following statements.

(a) If $H \lhd G$, then

$$\forall a \in G, \ aHa^{-1} < G.$$

- (b) $H \lhd G \Leftrightarrow \forall a \in G, \ aHa^{-1} = H$.
- (c) $H \lhd G \Leftrightarrow \forall a \in G, aH = Ha$.

Exercise 4. Let G be a group and H < G. Consider the following relation on G:

$$a \sim b \Leftrightarrow ab^{-1} \in H$$
.

- (a) Prove that this is an equivalence relation.
- (b) Prove that the equivalence classes are the right cosets of H.

Exercise 5. Let $G = (\mathbb{C} \setminus \{0\}, \cdot)$. Consider the subgroups \mathbb{S}^1 and $\mathbb{R}_{>0}$. Draw a picture of the cosets of \mathbb{S}^1 , and a picture of the cosets of $\mathbb{R}_{>0}$.

Exercise 6. Consider $\mathbb{Z}^2 \triangleleft \mathbb{R}^2$. Prove that

$$\mathbb{R}^2/\mathbb{Z}^2 \simeq \mathbb{S}^1 \times \mathbb{S}^1$$
.

Exercise 7 (Fundamental Theorem of Homomorphism). Let $\varphi : G \to G'$ be a homomorphism, and let $N \lhd G$. Assume that $N \subset \ker \varphi$, and denote by π the quotient homomorphism, $\pi : G \to G/N$. Prove that there exists a unique homomorphism $f : G/N \to G'$ such that $\varphi = f \circ \pi$.

(Hint: the proof is the same as the proof of the First Isomorphism Theorem given in class. Just adapt it to this more general case.)

Exercise 8 (Conjugation of isometries). Consider the subgroups defined in Homework 05, Exercise 7 and 8:

$$T = \left\{ \begin{array}{ccc} \begin{pmatrix} 1 & 0 & v_x \\ 0 & 1 & v_y \\ 0 & 0 & 1 \end{array} \right| \quad v_x, v_y \in \mathbb{R} \\ \left\{ \begin{array}{ccc} \text{Isom}(\mathbb{R}^2) \\ \text{Isom}(\mathbb{R}^2) \\ \end{array} \right\} < \text{Isom}(\mathbb{R}^2)$$

consisting of translations and the identity, and

$$O = \left\{ \left. \begin{pmatrix} A & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right| A \in O(2) \right\} < \operatorname{Isom}(\mathbb{R}^2),$$

consisting of the isometries that fix the origin.

(a) Let $t \in T$ be the translation by the vector $\begin{pmatrix} v_x \\ v_y \end{pmatrix}$. Given an $o \in O$, find a fixed point of the element tot^{-1} .

(Hint: no need to do computations with matrices, you can find it geometrically.)

- (b) Given $t \in T$, describe the subgroup tOt^{-1} , and prove that O is not normal.
- (c) For a general $x \in \text{Isom}(\mathbb{R}^2)$ and $t \in T$, compute xtx^{-1} .
- (d) Prove that $T \triangleleft \text{Isom}(\mathbb{R}^2)$.