COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK

Intro to Modern Algebra I
Math GU4041
New York, 2021/02/10

Exercise Sheet 5

Isometries

Exercise 1. Find matrices $A, B, C \in G L(2, \mathbb{R})$, where A, B are not diagonal and C is diagonal such that

$$
\begin{aligned}
& A B=B A, \\
& A C \neq C A .
\end{aligned}
$$

Exercise 2. Define

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Note that $R_{\theta}=R_{\theta+2 \pi n}$, with $n \in \mathbb{Z}$. Consider the subset

$$
S O(2)=\left\{R_{\theta} \mid \theta \in \mathbb{R}\right\} \subset S L(2, \mathbb{R})
$$

Prove that $S O(2)<S L(2, \mathbb{R})$ (i.e. that it is a subgroup). In order to do so, compute $R_{\theta} R_{\phi}$ and R_{θ}^{-1}.

Exercise 3. Define

$$
S_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) .
$$

Note that $S_{\theta}=S_{\theta+2 \pi n}$, with $n \in \mathbb{Z}$. Consider the subset

$$
O(2)=S O(2) \cup\left\{S_{\theta} \mid \theta \in \mathbb{R}\right\} \subset G L(2, \mathbb{R})
$$

Prove that $O(2)<G L(2, \mathbb{R})$ (i.e. that it is a subgroup). In order to do so, compute $S_{\theta} R_{\phi}, R_{\theta} S_{\phi}$, $S_{\theta} S_{\phi}$ and S_{θ}^{-1}. Notice that $O(2)$ is not a subgroup of $S L(2, \mathbb{R})$.

Exercise 4. Prove that

$$
\begin{aligned}
& S O(2)=\left\{A \in S L(2, \mathbb{R}) \mid A A^{T}=\operatorname{Id}\right\} \\
& O(2)=\left\{A \in G L(2, \mathbb{R}) \mid A A^{T}=\operatorname{Id}\right\}
\end{aligned}
$$

$O(2)$ is called the orthogonal group of \mathbb{R}^{2}, and $S O(2)$ the special orthogonal group of \mathbb{R}^{2}.

Exercise 5. Show that S_{θ} is a reflection, and compute the axis of the reflection. (Hint: for example, you can compute the eigenvalues and the eigenvectors of S_{θ}).

Exercise 6. Consider the subset

$$
\left.\left.\operatorname{Isom}\left(\mathbb{R}^{2}\right)=\left\{\left.\left(\begin{array}{cc}
A & v_{x} \\
0 & 0
\end{array}\right) \right\rvert\, \begin{array}{c}
v_{y}
\end{array}\right) \right\rvert\, A \in O(2), \quad v_{x}, v_{y} \in \mathbb{R}\right\} \subset G L(3, \mathbb{R})
$$

Prove that $\operatorname{Isom}\left(\mathbb{R}^{2}\right)<G L(3, \mathbb{R})$. In order to do so, verify that

$$
\left(\begin{array}{cc}
& \\
& v_{x} \\
0 & 0
\end{array} v_{y} 1\right)^{-1}=\left(\begin{array}{cc}
A^{-1} & w_{x} \\
0 & 0
\end{array} w_{y}\right)
$$

where

$$
\binom{w_{x}}{w_{y}}=-A^{-1}\binom{v_{x}}{v_{y}} .
$$

Exercise 7. Prove that the subset

$$
\left\{\left.\left(\begin{array}{ccc}
1 & 0 & v_{x} \\
0 & 1 & v_{y} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, v_{x}, v_{y} \in \mathbb{R}\right\} \subset \operatorname{Isom}\left(\mathbb{R}^{2}\right)
$$

is a subgroup of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ consisting of all the translations and the identity.

Exercise 8. Prove that the subset

$$
\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \right\rvert\, A \in O(2)\right\} \subset \operatorname{Isom}\left(\mathbb{R}^{2}\right)
$$

is a subgroup of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ consisting of all the isometries that fix the origin.

