COLUMBIA UNIVERSITY
 in the city of new york

Intro to Modern Algebra I
Math GU4041
New York, 2021/02/03

Exercise Sheet 4
 Permutations

Exercise 1. List all the elements of \mathfrak{S}_{2} and \mathfrak{S}_{3}. Verify that all their non-identity elements are cycles.

Exercise 2. Prove the following statements.
(a) Two disjoint cycles commute: $\sigma \tau=\tau \sigma$.
(b) If σ is a k-cycle, then for some $i \in\{1, \ldots, n\}$,

$$
\sigma=\left(\begin{array}{llll}
i & \sigma(i) & \sigma^{2}(i) & \ldots \\
\left.\sigma^{k-1}(i)\right)
\end{array}\right.
$$

(c) If σ is a k-cycle, then $o(\sigma)=k$.

Exercise 3. Given a fixed $\sigma \in \mathfrak{S}_{n}$, show that the relation defined by

$$
i \sim j \Leftrightarrow \exists k \in \mathbb{Z} \text { s.t. } \sigma^{k}(i)=j .
$$

is an equivalence relation. Conclude that the orbits relative to σ form a partition of $\{1, \ldots, n\}$.

Exercise 4. For every one of the following permutations, find the cycle decomposition, compute the order, and express the permutation as a product of transpositions.
(a) $\left(\begin{array}{lllll}1 & 4 & 2\end{array}\right)\left(\begin{array}{lll}1 & 4 & 3\end{array}\right)$.
(b) $\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)$.
(c) $\left(\begin{array}{lllll}1 & 2 & 3\end{array}\right)\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$.
(d) $\left(\begin{array}{llllllll}1 & 2 & 3 & 5 & 7\end{array}\right)\left(\begin{array}{llll}2 & 4 & 7\end{array}\right)$.
(e) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5\end{array}\right)$

Exercise 5. Write permutations in \mathfrak{S}_{13} of order 13, 42, 20. What is the permutation in \mathfrak{S}_{13} of the greatest order?

Exercise 6. Compute the following:

$$
\min \left\{m \in \mathbb{N} \backslash\{0\} \mid \forall \sigma \in \mathfrak{S}_{4}, \sigma^{m}=\operatorname{Id}\right\}
$$

Exercise 7. Complete the proof of the lemma stating that if $\sigma \in \mathfrak{S}_{n}$ and $\tau=\left(\begin{array}{ll}i & j\end{array}\right)$ is a transposition, the number of orbits in σ and $\tau \sigma$ differ by 1 . In the case when i, j are in different orbits, cover the cases when i or j or both are alone in their orbit. In the case when i, j are in the same orbit, cover the cases when they are adjacent in the cycle, or when their orbit has just two elements.

Exercise 8. Prove that every non-identity element of the alternating group \mathfrak{A}_{n} is a product of 3-cycles. (Hint: Use Exercise 4, (a),(b),(c) to show that, if $n \geq 3$, a product of two transpositions is either a 3 -cycle or a product of two 3 -cycles.)

