COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK

Intro to Modern Algebra I
Math GU4041
New York, 2021/01/27

Exercise Sheet 3

Modular Arithmetics

Exercise 1. Prove the following statements.
(a) Every odd natural number is either of the form $4 n+1$ or of the form $4 n+3$, for some $n \in \mathbb{N}$.
(b) Every odd number of the form $4 n+3$ has at least a prime factor of the form $4 n+3$.
(c) There is an infinite number of primes of the form $4 n+3$.

Exercise 2. Given a fixed $n \in \mathbb{N}, n>1$, the relation

$$
a \equiv b \quad(\bmod n)
$$

defined as

$$
n \mid(a-b)
$$

is an equivalence relation.

Exercise 3. Given a fixed $n \in \mathbb{N}, n>1$, prove that $a \equiv b(\bmod n)$ if and only if a and b give the same remainder when divided by n.

Exercise 4. Given a fixed $n \in \mathbb{N}, n>1$, prove that, if $a_{1} \equiv a_{2}(\bmod n)$ and $b_{1} \equiv b_{2}(\bmod n)$, then
(a) $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod n)$.
(b) $a_{1} b_{1} \equiv a_{2} b_{2} \quad(\bmod n)$.

Exercise 5. Given a fixed $n \in \mathbb{N}, n>1$, prove that $[a] \in \mathbb{Z}_{n}$ has a multiplicative inverse if and only if $(a, n)=1$. (Hint: use Bézout's identity).

Exercise 6. List the elements of \mathbb{Z}_{16}^{*} and \mathbb{Z}_{18}^{*}.

Exercise 7. Find two permutations $\sigma, \tau \in \mathfrak{S}_{4}$ that don't commute, i.e. such that $\sigma \tau \neq \tau \sigma$.

Then compute the four permutations $(\sigma \tau)^{2}, \sigma^{2} \tau^{2},(\sigma \tau)^{-1}, \sigma^{-1} \tau^{-1}$.

