COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Intro to Modern Algebra I Math GU4041 New York, 2021/01/27

EXERCISE SHEET 3

Modular Arithmetics

Exercise 1. Prove the following statements.

- (a) Every odd natural number is either of the form 4n + 1 or of the form 4n + 3, for some $n \in \mathbb{N}$.
- (b) Every odd number of the form 4n + 3 has at least a prime factor of the form 4n + 3.
- (c) There is an infinite number of primes of the form 4n + 3.

Exercise 2. Given a fixed $n \in \mathbb{N}$, n > 1, the relation

$$a \equiv b \pmod{n}$$

defined as

 $n \mid (a-b)$

is an equivalence relation.

Exercise 3. Given a fixed $n \in \mathbb{N}$, n > 1, prove that $a \equiv b \pmod{n}$ if and only if a and b give the same remainder when divided by n.

Exercise 4. Given a fixed $n \in \mathbb{N}$, n > 1, prove that, if $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$, then

- (a) $a_1 + b_1 \equiv a_2 + b_2 \pmod{n}$.
- (b) $a_1b_1 \equiv a_2b_2 \pmod{n}$.

Exercise 5. Given a fixed $n \in \mathbb{N}$, n > 1, prove that $[a] \in \mathbb{Z}_n$ has a multiplicative inverse if and only if (a, n) = 1. (Hint: use Bézout's identity).

Exercise 6. List the elements of \mathbb{Z}_{16}^* and \mathbb{Z}_{18}^* .

Exercise 7. Find two permutations $\sigma, \tau \in \mathfrak{S}_4$ that don't commute, i.e. such that

 $\sigma \tau \neq \tau \sigma$.

Then compute the four permutations $(\sigma \tau)^2, \sigma^2 \tau^2, (\sigma \tau)^{-1}, \sigma^{-1} \tau^{-1}$.