COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Intro to Modern Algebra I Math GU4041 New York, 2021/01/20

EXERCISE SHEET 2

Primes

Exercise 1. Find (a, b) and express it as a linear combination of a, b (i.e. write (a, b) = sa + tb with $s, t \in \mathbb{Z}$) for the following pairs of numbers.

- (a) a = 116, b = -84.
- (b) a = 85, b = 65.
- (c) a = 72, b = 26.
- (d) a = 72, b = 25.

Exercise 2. Show that if $a \mid m, b \mid m$ and (a, b) = 1, then

 $ab \mid m$.

Exercise 3. To check that a given integer n > 1 is a prime, prove that it is enough to show that n is not divisible by any prime p with $p \le \sqrt{n}$.

Exercise 4. Check if the following are prime.

(a) 301.

- (b) 473.
- (c) 1001.

Exercise 5. Assume $m = p_1^{a_1} \dots p_k^{a_k}$ and $n = p_1^{b_1} \dots p_k^{b_k}$, where p_1, \dots, p_k are distinct primes and $a_1, \dots, a_k, b_1, \dots, b_k \ge 0$. Express (m, n) as $p_1^{c_1} \dots p_k^{c_k}$ by describing the *c*'s in terms of the *a*'s and *b*'s.

Exercise 6. Define the least common multiple of positive integers m, n to be

 $\operatorname{lcm}(m,n) = \min\{ v \in \mathbb{N} \setminus \{0\} \mid m \mid v \quad \text{AND} \quad n \mid v \}.$

Express lcm(m, n) in terms of the factorization of m and n given in Exercise 5, and prove that

$$\operatorname{lcm}(m,n) = \frac{mn}{(m,n)} \,.$$

Exercise 7. If p is a prime, prove that one cannot find non-zero integers a, b such that

$$a^2 = pb^2.$$

Notice that this shows that $\sqrt{p} \notin \mathbb{Q}$.