Exercise Sheet 1

Numbers

Exercise 1. Prove that, for all $n \in \mathbb{N}$,

$$
\sum_{i=0}^{2 n} i^{2}=\frac{n(2 n+1)(4 n+1)}{3} .
$$

Exercise 2. Prove that, for all $n \in \mathbb{N}$ with $n \geq 7$,

$$
n!>3^{n}
$$

Exercise 3. Consider the sequence of real numbers defined by induction by the relations

$$
\left\{\begin{array}{c}
x_{1}=1 \\
x_{n+1}=\sqrt{1+2 x_{n}}
\end{array}\right.
$$

Prove that for all $n \in \mathbb{N}$ with $n \geq 1$, we have

$$
x_{n}<4 .
$$

Exercise 4. Prove the following properties of divisibility.
(a) $\forall n \in \mathbb{Z}, 1 \mid n$.
(b) $\forall d \in \mathbb{Z} \backslash\{0\}, d \mid 0$.
(c) If $d \mid n$ and $n \mid q$, then $d \mid q$.
(d) If $d \mid n$ and $d \mid q$, then $\forall u, v \in \mathbb{Z}, d \mid(u n+v q)$.
(e) $d \mid 1 \Leftrightarrow d= \pm 1$.
(f) If $d \mid n$ and $n \mid d$, then $d= \pm n$.

Exercise 5. Prove that, for all $n \in \mathbb{N}$,

$$
3 \mid\left(n^{3}-n\right) .
$$

Exercise 6. Compute the quotient and remainder of the Euclidean division between the following pairs of numbers:
(a) 25,4 .
(b) 28,6 .
(c) $-28,6$.
(d) $-14,3$.

Exercise 7. Write all the elements of Div_{n}, the set of divisors, where n is one of the following numbers:
(a) 5 .
(b) 12 .
(c) 15 .

