Elliptic Curve Cryptography

Sebastian Pallais-Aks

November 19th, 2025

Outline

Connection to Modular Forms: Modularity Theorem

Elliptic Curve Discrete Log Problem

ECIES

CCA Security

Elliptic Curves

- ▶ An elliptic curve *E* is given by $y^2 = x^3 + Ax + B$.
- ▶ We can reduce $E \pmod{p}$ and count points $N_p = |E(\mathbb{F}_p)|$.
- ▶ The "error terms" $a_p = p + 1 N_p$ encode deep arithmetic.
- From these, we build the Hasse-Weil L-function: L(E, s).

Modular Forms

ightharpoonup A (newform) cusp form f of weight 2 has a Fourier expansion:

$$f(au) = \sum_{n=1}^{\infty} b_n q^n \quad (q = e^{2\pi i au})$$

From its coefficients b_n , we also build an L-function: L(f,s).

The Modularity Theorem

Theorem (Taniyama-Shimura-Weil, Wiles, et al.)

Every elliptic curve E over \mathbb{Q} is **modular**.

What This Means

For every E/\mathbb{Q} , there exists a modular form f (of weight 2, for some $\Gamma_0(N)$) such that their L-functions are identical:

$$L(E,s)=L(f,s)$$

This implies their coefficients match: $a_p = b_p$ for all (good) primes p.

The Playground: $E(\mathbb{F}_p)$

The Group

- ▶ We fix a large prime p and work with an elliptic curve E over \mathbb{F}_p .
- ▶ The set of points forms a finite abelian group (over addition):

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 \mid y^2 \equiv x^3 + Ax + B \pmod{p}\} \cup \{\mathcal{O}\}$$

We pick a base point P that generates a large subgroup of prime order n. The Playground: $E(\mathbb{F}_p)$

The Operation

We define R = P + Q as follows:

- ▶ Draw a straight line that passes through both *P* and *Q*.
- ▶ By the definition of an Elliptic Curve, we know that this line will intersect the elliptic curve at exactly one other point, S.
- R is the reflection of S across the x-axis.

The Playground: $E(\mathbb{F}_p)$

The "Easy" Problem: Scalar Multiplication

- ▶ **Given:** $k \in \mathbb{Z}$ and P (a point on $E(\mathbb{F}_p)$).
- ► Compute: Q = kP = P + P + ... + P (*k* times).
- ► How: Fast, using the "double-and-add" algorithm (analog of repeated squaring).
- **Runtime:** $O(\log k)$.

The "Hard" Problem: ECDLP

- ▶ **Given:** P and Q = kP.
- **Find:** The integer k.
- This is the Elliptic Curve Discrete Logarithm Problem (ECDLP).
- The security of all ECC rests on the hardness of this problem.

Proof Sketch: Why is ECDLP "Harder" than Factoring?

Classical DLP (in \mathbb{Z}_p^*)

- **Problem:** Find *k* where $h \equiv g^k \pmod{p}$.
- ▶ Attack: The sub-exponential Index Calculus algorithm.
- ▶ Why it works: It relies on the "structure" of Z. We can "factor" numbers into a factor base of small primes.
- Runtime: Sub-exponential.

Proof Sketch: Why is ECDLP "Harder" than Factoring?

ECDLP (in $E(\mathbb{F}_p)$)

- **Problem:** Find k where Q = kP.
- ► Attack: No known "Index Calculus" analog.
- ▶ Why?: There is no known "factor base" of points. Thus, we can't exploit smoothness in the same way as with \mathbb{Z} . This is due to the
- Best Attacks: Generic group algorithms (Pollard's Rho, Baby-Step Giant-Step).
- ▶ Runtime: $O(\sqrt{n})$. This is exponential in the bit-length of n.

ECC vs. RSA

RSA Attack (General Number Field Sieve - GNFS)

For an input key of k bits, the runtime is **sub-exponential**:

$$O\left(\exp\left(c\cdot k^{1/3}\cdot (\log k)^{2/3}\right)\right)$$

The exponent $(k^{1/3})$ grows slower than k.

ECC Attack (Pollard's Rho)

For an input key of k bits, the runtime is **exponential**:

$$O(2^{k/2})$$

The exponent (k/2) grows *linearly* with k.

ECC vs. RSA

Conclusion

To get 2¹²⁸ security:

► ECC: We need $k/2 = 128 \implies k = 256$ bits.

▶ **RSA**: We need $k^{1/3}(...) \approx 128 \implies k = 3072$ bits.

Elliptic Curve Diffie-Hellman Public: Elliptic curve E Point P on E · N E Z ·Picks private key a & 21,..., n-13 ·Computes public key A= aP=P-P+...+Platines) Pichs private key 6 = 31, ..., n-13 Camputes public Key
B=bP=P+P+P (5+line) Key exchange: Bol computes S=bA=b(aP)=(ba)P Alice camputes 5= aB = a(bP)= (ab)P Now, they share a secret point S Eur course find 5 without solving a hard problem

Elliptic Curve Integrated Encryption Scheme

Setup

Alice has Bob's public key B and a message m.

- 1. Key Generation (Asymmetric):
 - ▶ Alice generates a new, *ephemeral* private key *r*.
 - ▶ She computes the ephemeral public key R = rP.
 - She computes the shared secret: S = rB.
- 2. Key Derivation (KDF):
 - ▶ Use the x-coordinate of *S* to derive symmetric keys:

$$K_{\mathsf{enc}} \| K_{\mathsf{mac}} = \mathsf{KDF}(S_{\mathsf{x}})$$

- 3. Encryption & Authentication (Symmetric):
 - **Encrypt:** $c = \text{Encrypt}(K_{\text{enc}}, m)$.
 - ▶ Authenticate: $t = MAC(K_{mac}, c)$.
- 4. **Output:** Alice sends the ciphertext (R, c, t).

Elliptic Curve Integrated Encryption Scheme

Setup

Bob has his private key b and receives (R, c, t).

- 1. Key Generation (Asymmetric):
 - ▶ Bob computes the *same* shared secret: S = bR.
 - (Since bR = b(rP) = (br)P = r(bP) = rB).
- 2. Key Derivation (KDF):
 - Bob derives the exact same keys:

$$K_{\mathsf{enc}} \| K_{\mathsf{mac}} = \mathsf{KDF}(S_{\mathsf{x}})$$

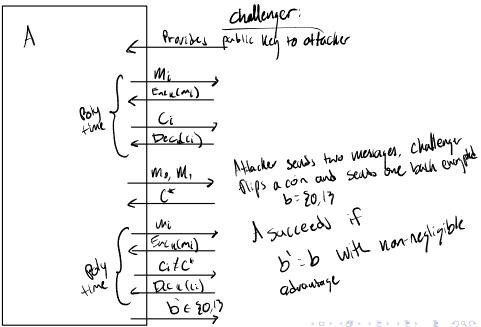
- 3. Verify & Decrypt (Symmetric):
 - **Verify FIRST:** Check if $t \stackrel{?}{=} Verify(K_{mac}, c)$.
 - ► If check fails ⇒ ABORT!
 - ▶ If check passes \Longrightarrow **Decrypt:** $m = \text{Decrypt}(K_{\text{enc}}, c)$.

The Security Proof (sketch)

Our Security Goal: IND-CCA2

- ▶ **IND: Indistinguishability**. An attacker cannot distinguish between an encryption of m_0 and m_1 .
- ► CCA: Chosen Ciphertext Attack. The scheme remains secure even if the attacker has access to a decryption oracle.

The CCA Security Game



Why ECIES (with a MAC) is CCA-Secure

Why "ECIES-without-MAC" Fails

- ► A scheme without a MAC is often "malleable."
- An attacker could intercept C = (R, c), modify it to C' = (R, c'), and send C' to the oracle.
- ▶ The oracle would decrypt c' (using the same key K_{enc}) and return m'.
- ▶ This m' might leak information about the original m.

Why ECIES (with a MAC) is CCA-Secure

Why ECIES (with a MAC) Succeeds

- ► This is an **Encrypt-then-MAC** construction.
- Attacker tries to forge a new ciphertext C' = (R, c', t').
- ▶ They don't know K_{mac} , so they cannot forge a valid tag t' that matches their new c'.
- ► The decryption oracle (Bob) computes the *correct* tag $t_{correct} = MAC(K_{mac}, c')$.
- ▶ It sees $t' \neq t_{correct}$ and just returns **ABORT**.
- ▶ **The attacker learns nothing.** The oracle is useless to them.