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If you spot any errors, please let me know.

In the last talk, we discussed the group action of SL2(R) on H(
a b
c d

)
◦ z =

az + b

cz + d
.

Out of notational simplicity, we will often drop the ◦ when it is clear and notate the group action

(
a b
c d

)
· z

or even just

(
a b
c d

)
z.

In particular, the SL2(R) action restricts to a group action SL2(Z) on H.
We also defined modular forms for SL2(Z). In particular, we had the transformation property

f

((
a b
c d

)
◦ z
)

= (cz + d)kf(z)

for

(
a b
c d

)
∈ SL2(Z).

To help study the group action of SL2(Z) on H, it will be helpful to understand the geometry of the quotient
SL2(Z)\H.

2.1 Fundamental Domain

Definition 2.1. A fundamental domain for the action of SL2(Z) on H is a connected open subset D of
H such that

• No two points of D are equivalent under SL2(Z), and

• H can be expressed as a union of translates of the closure of D by elements of SL2(Z).

We now will describe the fundamental domain for SL2(Z) on H. To do so, it is convenient to define two
specific elements of SL2(Z):

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Note that Sz = −1/z, and Tz = z + 1.
What does the fundamental domain look like? It turns out to be the open set

D = {z ∈ H : |z| > 1,−1/2 < x < 1/2} .

I will not try to LaTeX a picture of the fundamental domain in these notes.

Theorem 2.2 (Theorem 2.12 in Milne). The following are true:

1. D is a fundamental domain for SL2(Z).

2. For distinct z and z′ in the closure of D, they are SL2(Z)-equivalent iff

(a) Re(z) = ±1/2, and z′ = z ∓ 1 (i.e. Tz = z′ or Tz′ = z), or

(b) |z| = 1 and z′ = −1/z.

In particular, all such SL(2,Z)-invariant points lie on the boundary of D.
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3. For a point z ∈ D, the stabilizer of z is {±I2}, except for

• z = i, which has stabilizer S of order 2 in PSL2(Z),

• z = ρ = e2πi/6, which has stabilizer TS of order 3 in PSL2(Z), and

• z = ρ2, which has stabilizer ST 2 of order 3 in PSL2(Z).

4. PSL2(Z) is generated by S and T .

Proof. Let Γ′ be the subgroup of SL2(Z) generated by S and T . We begin by showing that Γ′ ·D = H.

Consider any z = x+ iy ∈ H. Recall that for any γ =

(
a b
c d

)
∈ Γ′ ⊆ SL2(Z), we have that

Im(γz) =
Im(z)

|cz + d|2
.

Note that since |cz + d|2 = (cx+ d)2 + (cy)2, for given fixed z (i.e. fixed x and y) and positive integer
N , there are finitely many (c, d) such that |cz+d|2 ≤ N (In particular c must be bounded, which forces
d to also be bounded). Since there are only finitely many (c, d) such that |cz+d|2 is small, we conclude
that there is a minimal value of |cz + d|2. Thus, we conclude that there is a maximal value of Im(γz),

ranging over γ ∈ Γ′. Let γ′ be this maximal choice; in other words, for any other γ′′ ∈
(
a b
c d

)
,

Im(γ′′z) ≤ Im(γ′z).

Now, note that we can act via T to shift γ′z; i.e. there exist integer n such that − 1
2 ≤ Re(Tnγ′z) ≤ 1

2 .
Let γ∗ = Tnγ′, this by definition lise in Γ′. Note that Im(γ∗z) = Im(γ′z), as shifting by T does not
change the imaginary part of an element in H.

Now, suppose for contradiction that |γ∗z| < 1. Then acting by S on γ′z, we have that

Im(Sγ∗z) =
Im(γ∗z)

|γ∗z|2
> Im(γ∗z) = Im(γ′z),

contradicting the maximality of γ′. Thus, we conclude that |γ∗z| ≥ 1, and so for any z ∈ H, there
exists γ∗ ∈ Γ′ such that γ∗z ∈ Γ′ ·H.

Next, suppose that z, z′ ∈ D are SL2(Z)-equivalent; i.e., there is such that

(
a b
c d

)
∈ SL2(Z) such that(

a b
c d

)
z = z′. WLOG, Im z ≤ Im z′, and let z = x+ iy. Then

Im(z′) =
Im z

|cz + d|2
,

so we have that |cz + d|2 = (cx + d)2 + (cy)2 ≤ 1. Since − 1
2 ≤ x ≤ 1

2 and |y| ≥
√
3
2 , there are finitely

many possibilities; in particular, |c| ≤ 1. Exhausting all possibilities gives point 2, as well as finishing
point 1. The group theoretic arguments that finish point 3 are left as an exercise.

For point 4, we prove the claim geometrically. We showed above that Γ′ · D = H. Consider any
z ∈ D (note specifically that z is not on the boundary). Consider any γ ∈ SL2(Z); we wish to show
that γ ∈ Γ′. Since γz ∈ H, there exists γ′ ∈ Γ′ and z′ ∈ D such that γz = γ′z′. Hence, we have
that z′ = (γ′)−1γz. Since Γ′ ⊆ SL2(Z), (γ′)−1γ ∈ SL2(Z), and by point 2, since z ∈ D (and not on
the boundary), we have that z = z′. Moreover, by point 3, since z ∈ D is stabilized by (γ′)−1γ, we
conclude that (γ′)−1γ = {±I2}. Hence, γ = ±γ′ ∈ Γ′, as desired.

Remark 2.3. In particular, one can show that

PSL2(Z) = 〈S, T : S2 = 1, (ST )3 = 1〉.
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Remark 2.4. Hyperbolic geometry turns out to be a helpful way to study the above fundamental domain
(and H in general), and could be an interesting topic for a talk. Iwaniec (Section 2.1-2.3), as listed in the
references for the course, is a good reference (for a modular forms focused view of hyperbolic geometry).

Since S and T generate PSL2(Z), for a modular form f , the modularity condition only needs to be checked
for S and T ; i.e. it suffices to check that f(−1/z) = zkf(z) and f(z + 1) = f(z). Hence f is a periodic
function. Thus, Fourier theory is useful to study f .

2.2 Fourier theory for periodic functions

I’ll give a heuristic, hand-wavy description the theory for 1-periodic functions. Let f(x) : R → C be a
1-periodic function. The key will be functions e2πinx, for n ∈ N. Note that these are 1-periodic. Here, think
of n as a measuring a specific frequency.
One way to get information about f is by trying to “measure” its frequency at n. This gives Fourier
coefficients

an =

ˆ 1

0

f(x)e−2πinx dx .

Here you can think of the coefficient an as measuring the “correlation” between f and e2πinx; i.e. how similar
f is to e2πinx. For example, when f(x) = e2πinx exactly, then the corresponding an = 1. Hence, if f has
Fourier coefficient an at frequency n, we see it as behaving similarly to ane

2πinx.
Moreover, for two different frequencies m and n, the exponential functions are “uncorrelated” (orthogonal).
Specifically, ˆ 1

0

e2πimxe−2πinx dx = 0.

Since different frequencies are “uncorrelated”, the information from different frequencies shouldn’t “interfere”
with each other. Moreover, we expect that measuring more and more frequencies gives more and more
information about our function, and we can add this information together. By this logic, we can build a
Fourier series

∞∑
n=−∞

ane
2πinx

by adding up what we “see” the function behaving as at each frequency.
If f is sufficiently nice, the hope is that this Fourier series converges to the original function. There are far
less restrictive conditions, but for our purposes, assuming f is smooth, we get the desired convergence

f(x) =

∞∑
n=−∞

ane
2πinx.

Moreover, since f is smooth, one can show that the an rapidly decay in n (faster than any n−N ).
Details can be found in any analysis/functional analysis textbook.

2.3 Fourier expansions of modular forms

Let f be a modular form for SL(2,Z). Since f is holomorphic, it is smooth in x. Moreover, we know from
before that f(z) = f(z+ 1) (considering the transformation property under T ), so f is a 1-periodic function
of x. Then, we know from Fourier theory that it has a Fourier expansion of the form

f(x+ iy) =

∞∑
n=−∞

bn(y)e2πinx,

where bn(y) is a function of y for each n. However, since f is holomorphic, we have the Cauchy-Riemann
equations

∂f

∂y
= i

∂f

∂x
.

3



Austin Lei

Applying the equations to f of the above form gives

∞∑
n=−∞

b′n(y)e2πinx =

∞∑
n=−∞

−2πnbn(y)e2πinx.

Since the bn are rapidly decaying in n, we conclude by Plancherel’s theorem (theorem in functional analysis)
that for these two Fourier expansions to be equal

b′n(y) = −2πnbn(y) for all n,

and hence bn(y) = ane
−2πny for some constant an ∈ C.

Remark 2.5. If you haven’t heard of Plancherel’s theorem, think of it as a statement of uniqueness of
Fourier series given that the coefficients are sufficiently small.

Thus, we can write

f(z) =

∞∑
n=−∞

ane
−2πnye2πinx =

∞∑
n=−∞

ane
2πinz.

It is customary to write q = e2πiz. Hence we can write

f(z) =

∞∑
n=−∞

anq
n.

Remark 2.6. If f were not holomorphic and merely real-analytic (i.e. had power series representations at
all points), then these bn(y) could genuinely depend on y. For example, when f is real analytic, smooth,
invariant under SL(2,Z), and has sufficient decay properties (a Maass form), the bn(y) would be Whittaker
functions.

Note that for z in the fundamental domain, we have that 0 < |q| < 1; moreover, this function is holomorphic
in this range. It is natural to want to extend to holomorphicity at q = 0 – note that z → i∞ gives that
q → 0. Hence, if f , as a function of q is holomorphic for q = 0, then we say that f is holomorphic at ∞.

Remark 2.7. One can also see this from the Riemann surface view (to be discussed next week); this is
equivalent to adding the point of infinity and defining a complex structure at the point at infinity.

Thus, for a modular form f (i.e. for f is holomorphic at ∞), we can write the q-expansion

f(z) =

∞∑
n=0

anq
n.

We call the an the Fourier coefficients of f . By abuse of notation, we let f(∞) = a0. In particular, if
a0 = 0, we say that f is a cusp form.

Remark 2.8. The point at ∞ can be interpreted geometrically as a cusp (from the hyperbolic geometry point
of view) – hence the terminology cusp form.

Big idea for the rest of the semester: The Fourier coefficients will contain lots of “arithmetic information”
about the modular forms.
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