Recall the function r(n,k):

Then we note that

$$\Gamma(n_1 k_1) = \sum_{n_1 + n_2 = n} \Gamma(n_1 k_1) \Gamma(n_2 k_2)$$

for fixed k, +ka = k.

This mimics convolution for power series / polynomials.

Consider

$$\theta(z,k) = \sum_{n=0}^{\infty} \Gamma(n,k) e^{\partial z i z n} = \sum_{n=0}^{\infty} \Gamma(n,k) q^n$$

Proposition 15:

For each R=0, the series $\Theta(z,k)$ converges absolutely and defines a holomorphic function on H.

Key idea, we split r(n,h) 9° into Z9° (sum r(n,h) fines), via

$$\theta(z,k) = \sum_{v \in \mathbb{Z}^k} e^{a_{tri} |v|^2 z}$$

Take any ampact region RCH for which Im(2) > yo for some go >0. Then, consider the tail

$$|e^{atti|v|^2 + 1} = \sum_{n=N}^{\infty} \sum_{v \in \mathbb{Z}^n} |e^{atti n^2 + 1}|$$

$$|v| \ge N$$

Pick M big enough s.t. (2mH) = em & ym≥M. So, Tm2yo > M

42EK. So, absolute & mitorn converge on compact sets.

Absolute converge means we can reorder terns:

$$\begin{aligned}
\theta(\xi, k_1) & \theta(\xi, k_2) &= \left(\sum_{n=0}^{\infty} \Gamma(n_1, k_1) q^{n_1}\right) \left(\sum_{n_2=0}^{\infty} \Gamma(n_2, k_2) q^{n_2}\right) \\
&= \sum_{n=0}^{\infty} \left(\sum_{n_1+n_2=n} \Gamma(n_1, k_1) \Gamma(n_2, k_2)\right) q^{n_2} \\
&= \theta(\xi, k_1 + k_2).
\end{aligned}$$

Note that $\theta(z,u)$ is Z-periodic in z (since q is).

Proposition 16: The function $\theta(\xi,4)$ is modular of weight 2 for the anguence subgroup $\Gamma_{o}(4)$.

Modular of weight 2 for To(4) means

$$(cz+d)^2f(\Upsilon(z)) = f(z)$$

YzeH, Yrero(4).

Proof of Prop 16:

Weak modularity: (-64) generated by $\pm (-61)$ and $\pm (-41)$. First is just 2-1 translation, which 0 is invarient under, so we just consider 2^{-1} .

First we study $\theta(\Xi I) = \Xi e^{\pi i d^2 z}$.

Consider z on imaginary axis, so $\theta(it, 1) = ze^{-td^2t}$. $f(d) = e^{-td^2} = ze^{-tm^2}e^{-2timd}$

Scaling: For t(d)=), we have = f(m/J=).

Poisson Summation Formula: take $h(x) = e^{-tx^2t}$. Then, $\theta(it, 1) = Zh(d) = Zh(m) = Zh(m) = Zh(m) = Zh(m) = Zh(m) = Zh(m) = Zh(m)$.

Thus, the identity $\theta(\frac{1}{2},1) = \sqrt{-i2} \theta(2,1)$ true for all ZEH by Identity Thun (both hol on Imaxis).

$$\frac{1}{2} \frac{1}{4} \frac{1}{2} = 0$$

$$\frac{1}{4} \frac{1}{4} = 0$$

$$\frac{1$$

So, for
$$\theta(z,4) = \theta(z,1)^4$$

$$\theta(\chi(x), 4) = (42+1)^2 \theta(x, 4)$$

Is it holomorphic at cusps? Yes, by some technical details.

$$\mathcal{G}_{\lambda} = \mathcal{M}_{\lambda}(\Gamma_{0}(4)).$$

Proof of Fival Result:

From earlier result, Ma(Po(4)) is 2-dim.

Recall Gaza & Gaza:

$$G_{a,N}(z) = G_{a}(z) - N G_{a}(Nz)$$
.

both in Ma (70(4)), lin. indep by Fourier series wests (Pop6). Then,

$$\theta(2,4) = a G_{2,2} + b G_{2,4}$$

$$= -a \frac{\pi^2}{3} (|+249+\cdots|) - b\pi^2 (|+89+\cdots|).$$

From first two terms, $\alpha=0$, $b=\frac{1}{\pi c}$. Collecting terms, $\theta(z,4)=\sum_{n=0}^{\infty} r(n,4)q^n=\sum_{n=0}^{\infty} \left[\sum_{\substack{n \in \mathbb{N}\\ n \neq n}} d\right] q^n$.

Reference:
$$G_{2,2}(z) = -\frac{\pi^2}{3} \left(1 + 24 \sum_{n=1}^{\infty} \left(\sum_{\substack{d \mid n \\ 2 \nmid d}} d \right) q^n \right)$$

$$G_{2,4}(z) = -\pi^2 \left(1 + 8 \sum_{n=1}^{\infty} \left(\sum_{\substack{d \mid n \\ 4 \nmid d}} d \right) q^n \right)$$