
Counting Representations of a Number as Sums of 4
Squares

Lagrange proved in 1770 that every natural number can be expressed as a sum of four
squares, which naturally begs the enumerative question. Define the following function for
counting ways to express n ≥ 0 as a sum of k ≥ 0 squares:

r(n, k) := #{(m1, . . . ,mk) ∈ Zk : n = m2
1 + · · ·+m2

k}.

This note presents a scenic development of some of the basic theory of modular forms on
subgroups of SL2(Z), with the aim of proving the following formula.

For every n ≥ 1 we have

r(n, 4) = 8
∑
0<d|n
4∤d

d.

Applications in both geometry and number theory require the relaxation of the modu-
larity condition to certain finite-index subgroups of SL2(Z).

Definition 0.1. The principal congruence subgroup of level N , Γ(N) ⊴ SL2(Z), is the kernel
of the entrywise reduction homomorphism

π : SL2(Z) → SL2(Z/NZ).

We call a subgroup of SL2(Z) a congruence subgroup of level N if it contains Γ(N).

There are two other classes of congruence subgroups we will need.

Definition 0.2. Let π be the same mod N reduction map as above. We define the Hecke
congruence subgroup Γ0(N) as the preimage of the upper triangular matrices:

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Similarly, define Γ1(N) as the preimage of the unipotent matrices:

Γ1(N) :=

{(
a b
c d

)
: c ≡ 0, a, d ≡ 1 (mod N)

}
.

We have a natural filtration
Γ(N) ⊴ Γ1(N) ⊴ Γ0(N).
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We can naturally extend our definition of weak modularity to congruence subgroups.

Definition 0.3. For notational convenience, define the weight k operator

(f [γ]k)(z) := (cz + d)−kf(γ(z)).

A meromorphic function f : H → C is weakly modular of weight k with respect to Γ if

f [γ]k = f

for all γ ∈ Γ.

Definition 0.4. Let Γ ⊂ SL2(Z) be a congruence subgroup. A function f : H → C is a
modular form of weight k with respect to Γ if

1. f is holomorphic,

2. f is weakly modular of weight k with respect to Γ, and

3. for all γ ∈ SL2(Z), the function f [γ]k is holomorphic at infinity.

The third condition is the natural way to ask the function to be holomorphic at every
point of P1(Q), i.e. at all of the cusps. The weight k operator [γ]k should be thought of as
performing a change of coordinates to move a specific boundary point to ∞, which we can
then test for a holomorphic extension in the punctured disk.

Example 0.5 (Cusps of Γ0(2)). Recall that

Γ0(2) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod 2)

}
.

The group acts on P1(Q) = Q ∪ {∞} by γ · z = az+b
cz+d

.
Since γ(∞) = a/c and c is even for γ ∈ Γ0(2), all rationals with even denominator (in

lowest terms) lie in the same orbit as ∞.
If c is odd, no element of Γ0(2) can send ∞ to a/c, since c ≡ 0 (mod 2) is required

(SHOW DETERMINANT violates 2a/2c possibility). Thus rationals with odd denominator
form a second orbit, represented for instance by 1.

Hence Γ0(2) has exactly two cusps, represented by

∞ and 1.

We consider now modifications of the conditionally convergent Eisenstein series G2 which
give weight 2 modular forms on the subgroup Γ0(N).

Proposition 0.6. For each positive integer N , define the modified Eisenstein series

G2,N(z) := G2(z)−NG2(Nz).

Then G2,N ∈ M2(Γ0(N)).
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Proof Sketch. Remark on similarities from my from last seminar:
One works carefully with the conditionally convergent series for G2 to check that the steps

performed in our Fourier series derivation are valid. Then one checks that for all γ ∈ SL2(Z),

(G2[γ]2)(z) = G2(z)−
2πic

cz + d
.

With this in hand, we can prove weak modularity of G2,N .

Then for any γ =

(
a b
Nc d

)
∈ Γ0(N), notice that

Nγ(z) = γ′(Nz), γ′ =

(
a Nb
c d

)
.

(SKIP? to result) Applying this we can compute:

(G2,N [γ]2)(z) = (Ncz + d)−2
(
G2(γ(z))−NG2(Nγ(z))

)
= G2(z)−

2πicN

cNz + d
−N

(
(c(Nz) + d)−2G2(γ

′(Nz))
)

= G2(z)−
2πicN

cNz + d
−N

(
G2(Nz)− 2πic

cNz + d

)
= G2(z)−NG2(Nz).

So G2,N is weakly modular of weight k with respect to Γ0(N). They are holomorphic
on H since G2 is. That they are holomorphic at infinity will be a corollary of the previous
proposition and the Fourier series we compute below, whose terms are bounded by

an ≤ 8π2σ(n) ≤ 8π2n2.

Proposition 0.7. The Fourier series for the modified Eisenstein polynomials G2,2 and G2,4 are
given by

G2,2(z) = −π2

3

1 + 24
∞∑
n=1

∑
d|n
2∤d

d

 qn

 , G2,4(z) = −π2

1 + 8
∞∑
n=1

∑
d|n
4∤d

d

 qn

 .

Proof. Applying the Fourier series for G2 gives (for σ(n) = σ1(n) =
∑

d|n d) the expression

G2,2(z) = 2ζ(2)− 8π2

∞∑
n=1

σ(n)qn − 2

(
2ζ(2)− 8π2

∞∑
n=1

σ(n)q2n

)
= −2ζ(2)− 8π2

∑
n≥1
n odd

σ(n)qn − 8π2
∑
n≥1

n even

(
σ(n)− 2σ(n/2)

)
qn.
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But for even n, division by 2 induces a bijection between even divisors of n and all divisors
of n/2, ’ Hence ∑

d|n
2∤d

d = σ(n)− 2σ
(n
2

)
.

If n is odd, all divisors of n are odd, so∑
d|n
2∤d

d = σ(n).

In summary, ∑
d|n
2∤d

d =

σ(n), n odd,

σ(n)− 2σ
(n
2

)
, n even.

so pulling out −2ζ(2) = −π2

3
gives the result. The case of G2,4 is similar.
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