Counting Representations of a Number as Sums of 4
Squares

Lagrange proved in 1770 that every natural number can be expressed as a sum of four
squares, which naturally begs the enumerative question. Define the following function for
counting ways to express n > 0 as a sum of £ > 0 squares:

r(n, k) = #{(my,...,mp) €ZF :n=m?+---+mi}.

This note presents a scenic development of some of the basic theory of modular forms on
subgroups of SLy(Z), with the aim of proving the following formula.

For every n > 1 we have
r(n,4) =8 Z d.
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Applications in both geometry and number theory require the relaxation of the modu-
larity condition to certain finite-index subgroups of SLy(Z).

Definition 0.1. The principal congruence subgroup of level N, I'(N) < SLy(Z), is the kernel
of the entrywise reduction homomorphism

We call a subgroup of SLy(Z) a congruence subgroup of level N if it contains I'( V).

There are two other classes of congruence subgroups we will need.

Definition 0.2. Let 7 be the same mod N reduction map as above. We define the Hecke
congruence subgroup To(N) as the preimage of the upper triangular matrices:

To(N) = {(‘i Z) €SLy(Z):c=0 (mod N)}.

Similarly, define I';(N) as the preimage of the unipotent matrices:

I (N) = {(‘CZ Z) c=0, a,d=1 (mod N)}.



We can naturally extend our definition of weak modularity to congruence subgroups.

Definition 0.3. For notational convenience, define the weight k operator

(fe)(2) = (cz + d) T f((2))-

A meromorphic function f : H — C is weakly modular of weight k with respect to T if

flk=f
for all v € T'.

Definition 0.4. Let I' C SLy(Z) be a congruence subgroup. A function f : H — C is a
modular form of weight k with respect to I' if

1. f is holomorphic,
2. f is weakly modular of weight k£ with respect to I', and
3. for all v € SLy(Z), the function f[v] is holomorphic at infinity.

The third condition is the natural way to ask the function to be holomorphic at every
point of P1(Q), i.e. at all of the cusps. The weight k operator [y]; should be thought of as
performing a change of coordinates to move a specific boundary point to co, which we can
then test for a holomorphic extension in the punctured disk.

Example 0.5 (Cusps of I'y(2)). Recall that

To(2) = {@ Z) €SIu(Z): c=0 (mod 2)}.

The group acts on P'(Q) = QU {oc} by v-2 = %.

Since y(00) = a/c and c is even for v € ['g(2), all rationals with even denominator (in
lowest terms) lie in the same orbit as oo.

If ¢ is odd, no element of T'y(2) can send oo to a/c, since ¢ = 0 (mod 2) is required
(SHOW DETERMINANT violates 2a/2¢ possibility). Thus rationals with odd denominator
form a second orbit, represented for instance by 1.

Hence T'y(2) has exactly two cusps, represented by
oo and 1.

We consider now modifications of the conditionally convergent Eisenstein series G5 which
give weight 2 modular forms on the subgroup I'o(V).

Proposition 0.6. For each positive integer N, define the modified Eisenstein series
GQ}N(Z) = GQ(Z) — NGQ(NZ)

Then GQ’N € MQ(F(](N))



Proof Sketch. Remark on similarities from my from last seminar:
One works carefully with the conditionally convergent series for G5 to check that the steps
performed in our Fourier series derivation are valid. Then one checks that for all v € SLy(Z),

2mic
cz+d

(Ga[7]2)(2) = Ga(z) —

With this in hand, we can prove weak modularity of Go y.

Then for any v = (]\(;c Z) € I'o(V), notice that

Ny(z) = 7(N2), o = (fj ]ff) |

(SKIP? to result) Applying this we can compute:

(Gav[2)(2) = (Nez +d) 7 (Ga(y(2)) — NG2(N7(2)))

= Gy(z) — % — N ((C(Nz) + d)_2G2(7’(Nz)))
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= Gy(2) — NG(N2).

So G n is weakly modular of weight k with respect to I'((/V). They are holomorphic
on H since G5 is. That they are holomorphic at infinity will be a corollary of the previous
proposition and the Fourier series we compute below, whose terms are bounded by

a, < 87r20(n) < 872n?
Proposition 0.7. The Fourier series for the modified Eisenstein polynomials G 2 and Gg 4 are

given by
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Proof. Applying the Fourier series for G gives (for o(n) = o1(n) = 3_,,, d) the expression

Gra(2) = 20(2) - 87° Z n)q" —2(24(2)—8*20@)&1)
= —2((2) — 87" Z n)q" =812 Y (o(n) — 20(n/2))q".

n>1 n>1
n odd n even



But for even n, division by 2 induces a bijection between even divisors of n and all divisors

of n/2, " Hence
Zd =o(n) — 20(%) :

dn
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If n is odd, all divisors of n are odd, so

din
2d
In summary,
o(n), n odd,
- :
dn o(n) — 20(—) , M even.
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so pulling out —2¢(2) = —%2 gives the result. The case of Gg4 is similar. ]



