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Introduction

Γ(1) is really neat and beautiful, but this limits its applicability to
much of modern number theory.

Congruence Subgroups (Review)

Modern number theory (elliptic curves, Galois representations)
relies on congruence subgroups Γ ⊂ Γ(1).

▶ Γ0(N) = {γ ≡
(
∗ ∗
0 ∗

)
(mod N)}

▶ Γ1(N) = {γ ≡
(
1 ∗
0 1

)
(mod N)}

▶ Γ(N) = {γ ≡
(
1 0
0 1

)
(mod N)}



Introduction

Congruence Subgroups (Review)

Γ1(N) ⊂ Γ0(N) ⊂ Γ(1)
Goal: Highlight the key changes when moving from Γ(1) to Γ.



Review: Geometry of X (Γ) vs X (1)

Moving from Γ(1) to a congruence subgroup Γ

▶ Fundamental Domain: Becomes larger (index = area ratio),
potentially disconnected.

▶ Modular Curve X (Γ): Still a compact Riemann surface, but
more complex.



Review: Geometry of X (Γ) vs X (1)

Key Geometric Changes

▶ Genus g ≥ 0: Often positive (calculated via
Riemann-Hurwitz), unlike g = 0 for X (1). Ex: X0(11) has
g = 1.

▶ Multiple Cusps (ϵ∞ ≥ 1): The single cusp of X (1) splits
into distinct Γ-orbits.

▶ Fewer Elliptic Points (ϵ2, ϵ3): Only occur if Γ intersects the
stabilizer in Γ(1) non-trivially. Γ(N) has none for N > 1.

Topology

Requires careful definition of neighborhoods (horocycles) at cusps
to ensure that X (Γ) is Hausdorff



Review: Algebra of Forms and Riemann-Roch

▶ Much more complex structure for Γ than Γ(1)
▶ Riemann-Roch Theorem: Becomes the essential tool.

▶ Relates modular forms f ∈ Mk(Γ) to k/2-fold differentials ω
on X (Γ).

▶ Relates orders of vanishing ν(f ) and ν(ω) (depends on point
type: elliptic, cusp, other).

▶ Yields dimension formulas for Mk(Γ) and Sk(Γ) in terms of
g , ϵ2, ϵ3, ϵ∞.

▶ Crucial result: dim(S2(Γ)) = g .



Γ(1): One Cusp, One Series

▶ There is only one cusp at i∞. The stabilizer is generated by

z 7→ z + 1, or T =

(
1 1
0 1

)
.

▶ This single periodicity means every modular form has a
Fourier expansion in powers of q = e2πiz .

▶ Fourier expansion at the cusp: f (z) =
∑∞

n=0 anq
n

▶ For each even weight k ≥ 4, the Eisenstein space Mk/Sk is
one-dimensional, spanned by the class of the classical
Eisenstein series Ek(z) =

1
2ζ(k)

∑
(c,d)̸=(0,0)(cz + d)−k .



Γ: Multiple Cusps

▶ A modular form for Γ has a distinct Fourier expansion at each
of the ϵ∞ cusps.

▶ A modular form f ∈ Mk(Γ) must be holomorphic at every
cusp

▶ At a cusp s = α(∞), we analyze the expansion of f [α]k . The
periodicity at this cusp is determined by the smallest hs > 0

such that α

(
1 hs
0 1

)
α−1 ∈ Γ. This hs is the **width** of

the cusp.

▶ The expansion is a series in powers of qhs = e2πiz/hs .

▶ We need a richer family of Eisenstein series to account for the
constant terms at all these different cusps. The dimension of
the Eisenstein space is ϵ∞ (for k ≥ 3).



Generalized Eisenstein Series

For Γ(N):

For each cusp, represented by a vector v ∈ (Z/NZ)2, we define an
Eisenstein series E v

k (τ) by summing over lattice vectors in that
congruence class.

E v
k (τ) =

∑
(c,d)≡v (mod N),gcd(c,d)=1

(cτ + d)−k

This series is specifically constructed to be non-zero at the cusp
corresponding to v and zero at all others.



Generalized Eisenstein Series

For Γ1(N) and Γ0(N)

The space of all forms decomposes into eigenspaces for the
”diamond operators”. The basis for the Eisenstein series in these
spaces is constructed by taking linear combinations of the E v

k

series, weighted by Dirichlet characters.

This provides a complete and explicit bias for the Eisenstein space
Ek(Γ) = Mk(Γ)/Sk(Γ).



For Γ(1): A Commuting, Hermitian Family

▶ The Hecke operators Tn form a commuting family of linear
operators on Mk(Γ(1)) and Sk(Γ(1)).

▶ Crucially, they are Hermitian with respect to the Petersson
inner product on cusp forms: ⟨Tnf , g⟩ = ⟨f ,Tng⟩.

▶ By the spectral theorem, this guarantees an orthogonal basis
of Sk(Γ(1)) consisting of simultaneous eigenforms for all Tn.



New Operators, New Problems

Diamond Operators ⟨d⟩ for d ∈ (Z/NZ)∗

A new family of operators arises from the quotient
Γ0(N)/Γ1(N) ∼= (Z/NZ)∗

⟨d⟩f = f [α]k for any α =

[
a b
c δ

]
∈ Γ0(n) with δ ≡ d( mod N)

The diamond operator ⟨d⟩ respects the decomposition
Mk(Γ1(N)) =

⊕
X Mk(N,X ), operating on the eigenspace

asociated to each character X as multiplication by X (d)



New Operators, New Problems

Modified Adjoint Property

The second type of Hecke operator, denoted Tp is also a weight-k
double coset operator [Γ1αΓ2]k where Γ1 = Γ2 = Γ1(N) but now

α =

[
1 0
0 p

]
, p prime

For p ∤ N, the operators are no longer Hermitian but normal. They
satisfy T ∗

p = ⟨p⟩−1Tp. This still guarantees an orthogonal basis of
eigenforms for operators with p ∤ N.



The Problem of ”Oldforms”

▶ The space Sk(Γ1(N)) contains forms ”lifted” from lower levels
M|N. For example, if f (z) ∈ Sk(Γ1(M)), then f (z) and f (dz)
are in Sk(Γ1(N)).

▶ This creates redundancy and destroys the ”multiplicity-one”
property: different forms can have the same eigenvalues for
Tp with p ∤ N. This is a major obstacle to defining canonical
forms.



Atkin-Lehner Newform Theory

Oldspace Sold
k

The subspace spanned by all forms lifted from levels M that are
proper divisors of N.
A cusp form f lies in the oldspace if and only if its Fourier
coefficients an(f ) are zero for all n coprime to the level N.

Newspace Snew
k :

The orthogonal complement of the oldspace.

Sk(Γ1(N)) = Sk(Γ1(N))old ⊕ Sk(Γ1(N))new

Both subspaces are stable under the full Hecke algebra T
generated by all Tn and ⟨n⟩.



Atkin-Lehner Newform Theory

Multiplicity-One Theorem

The newspace Snew
k has an orthogonal basis of newforms. A

newform is a normalized (a1 = 1) common eigenform for the full
Hecke algebra. For any given system of eigenvalues, there is a
unique newform having them.



Canonical Forms and L-functions

▶ Newforms are the fundamental, arithmetically significant
building blocks of cusp forms.

▶ Being an eigenform for all Tn is equivalent to its L-function
having an Euler product over all primes:

L(s, f ) =
∞∑
n=1

an(f )n
−s =

∏
p

(1− ap(f )p
−s + χ(p)pk−1−2s)−1

▶ This complete Euler product is the crucial property that
connects modular forms to arithmetic geometry.

▶ The Modularity Theorem states that every elliptic curve over
Q corresponds to a unique rational newform of weight 2.



A New Symmetry for Γ0(N)

▶ For Γ(1), the matrix S =

(
0 −1
1 0

)
is a group generator. Its

action is part of the modularity condition.

▶ For Γ0(N), the matrix WN =

(
0 −1
N 0

)
is not in the group,

but it normalizes it: WNΓ0(N)W−1
N = Γ0(N).

▶ This gives rise to a new operator, the Fricke Involution, an
extra symmetry on the space of forms:

(WN f )(τ) = (N1/2τ)−k f (−1/(Nτ))



The Fricke Involution

▶ The Fricke involution WN is self-adjoint on Sk(Γ0(N)) and
squares to the identity (up to sign).

▶ It is the principal member of a family of Atkin-Lehner
involutions WQ for each prime power Q||N.



The Fricke Involution

▶ Key Result of Atkin-Lehner Theory: Newforms are
simultaneous eigenforms for all Atkin-Lehner involutions WQ .
The eigenvalue is always ±1.

WQ f = ϵQ f , ϵQ = ±1

▶ The sequence of eigenvalues (ϵQ) provides a canonical
”signature” for a newform.

▶ The eigenvalue of the main involution WN determines the sign
in the functional equation of the newform’s L-function. This
sign is a critical arithmetic invariant.
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