Hecke Operators I

Sebastian Pallais-Aks

October 13th, 2025

Outline

Fourier Expansions and The Ramanujan au-Function

Definitions of Hecke Operators

Fundamental Identities

Action on Fourier Coefficients

Eigenforms and Application to $\tau(n)$

Fourier Expansions

Modular Form q-Expansion

A modular form f(z) of weight 2k for $\Gamma(1) = SL_2(\mathbb{Z})$ has a Fourier series expansion:

$$f(z) = \sum_{n=0}^{\infty} c(n)q^n$$
, where $q = e^{2\pi i z}$

Example: The Ramanujan τ -Function

The discriminant modular form, $\Delta(z)$, is a cusp form of weight 12. Its Fourier coefficients are the τ -function, $\tau(n)$.

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n) q^n$$

Ramanujan's Conjectures

Conjectures for $\tau(n)$

For a prime p and coprime integers m, n:

1. Multiplicativity:

$$\tau(mn) = \tau(m)\tau(n)$$

2. Recurrence Relation:

$$\tau(p)\tau(p^n) = \tau(p^{n+1}) + p^{11}\tau(p^{n-1}) \text{ for } n \ge 1.$$

Two Perspectives: Lattice Definition

Lattice Definition

- ▶ Let \mathcal{L} be the set of all lattices in \mathbb{C} .
- ► The *n*-th **Hecke Operator**, T(n), acts on the free abelian group generated by \mathcal{L} . For a lattice $\Lambda \in \mathcal{L}$:

$$T(n)[\Lambda] = \sum_{[\Lambda:\Lambda']=n} [\Lambda']$$

▶ **Action on Functions:** For a function $F : \mathcal{L} \to \mathbb{C}$:

$$(T(n)F)(\Lambda) = \sum_{[\Lambda:\Lambda']=n} F(\Lambda')$$

Geometric Motivation for Double Cosets

The Problem with a Simple Action

We want to define an action of a matrix $\alpha \in GL_2(\mathbb{R})^+$ on the quotient space $\Gamma \backslash \mathbb{H}$.

- ▶ A map defined as $\Gamma z \mapsto \Gamma \alpha z$ is **not well-defined**.
- ▶ This is because Γ is not a normal subgroup of $GL_2(\mathbb{R})^+$, so in general $\alpha^{-1}\Gamma\alpha \neq \Gamma$. The orbit $\Gamma\alpha z$ depends on the choice of representative z.

Geometric Motivation for Double Cosets

The Double Coset Solution

- Instead of a single matrix α , we consider the entire **double** coset $\Gamma \alpha \Gamma$.
- ► This double coset can be decomposed into a finite, disjoint union of right cosets:

$$\Gamma \alpha \Gamma = \bigcup_{i} \Gamma \alpha_{i}$$

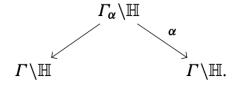
➤ This defines a "many-valued map" or a correspondence on the quotient space:

$$\Gamma z \mapsto \{\Gamma \alpha_1 z, \Gamma \alpha_2 z, \dots\}$$

The Hecke Correspondence

The Action as Pullback and Trace

The correspondence can be visualized with a diagram where $\Gamma_{\alpha} = \Gamma \cap \alpha^{-1} \Gamma_{\alpha}$ and $\Gamma = \bigcup \Gamma_{\alpha} \cdot \beta_{i}$.



The action of the Hecke operator on a modular function f is interpreted as a pullback $(f \circ \alpha)$ followed by a trace (summing over the cosets).

The Hecke Algebra: Formal Definition

As a Free Z-Module

The Hecke Algebra, denoted $\mathcal{H}(\Gamma, \Delta)$, is the free \mathbb{Z} -module generated by the double cosets $\Gamma \alpha \Gamma$ for $\alpha \in \Delta$.

► An element of the algebra is a formal finite sum with integer coefficients:

$$\sum n_{\alpha} \Gamma \alpha \Gamma, \quad n_{\alpha} \in \mathbb{Z}$$

The Hecke Algebra

Multiplication in the Algebra

We define a multiplication on $\mathcal{H}(\Gamma, \Delta)$:

First, decompose each double coset into a finite union of disjoint right cosets:

$$\Gamma \alpha \Gamma = \bigcup_{i} \Gamma \alpha_{i}$$
 and $\Gamma \alpha \Gamma = \bigcup_{i} \Gamma \beta_{i}$

Then

$$\Gamma \alpha \Gamma \cdot \Gamma \beta \Gamma = \Gamma \alpha \Gamma \beta \Gamma = \bigcup_{i,j} \Gamma \alpha_i \beta_j$$

► The product is then a formal sum over the resulting double cosets $[\gamma]$:

$$[\alpha] \cdot [\beta] = \sum_{\gamma \in \Delta} c_{\alpha,\beta}^{\gamma} [\gamma]$$

► The integer coefficients $c_{\alpha,\beta}^{\gamma}$, are defined as the number of pairs (i,j) with $\Gamma \alpha_i \beta_i = \Gamma_{\gamma}$.

Two Perspectives: Matrix (Double Coset) Definition

Matrix Definition

- Let M(n) be the set of 2×2 integer matrices with determinant n.
- ▶ Slash Operator: The action of $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})^+$ on a function f(z) of weight 2k:

$$(f|_k\alpha)(z) = (\det \alpha)^k(cz+d)^{-2k}f\left(\frac{az+b}{cz+d}\right)$$

▶ **Hecke Operator:** A sum over the orbits of $\Gamma(1)\backslash M(n)$:

$$(T(n)f)(z) = n^{k-1} \sum_{\alpha_i \in \Gamma(1) \setminus M(n)} (f|_k \alpha_i)(z)$$

A standard set of representatives for the orbits is

$$\left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid ad = n, a \ge 1, 0 \le b < d \right\}.$$

Hecke Operator Formula

Using either definition, we can also define Hecke operators on modular forms: T(n)f(z) is the function on \mathbb{H} associated with $n^{2k+1} \cdot T(n) \cdot F$. n^{2k-1} is inserted to ensure integer coefficients. Thus:

$$T(n)f(z) = n^{2k-1} \cdot \sum d^{-2k}f(\frac{az+b}{d})$$

Operator Identities

The **homothety operator** R_{λ} maps a lattice Λ to $\lambda\Lambda$.

- 1. $R_{\lambda}R_{\mu}=R_{\lambda\mu}$ (trivial)
- 2. $R_{\lambda}T(n) = T(n)R_{\lambda}$ (trivial)
- 3. If gcd(m, n) = 1, then T(m)T(n) = T(mn)
- 4. If p is prime, $T(p)T(p^n) = T(p^{n+1}) + pR_pT(p^{n-1})$

Proof Sketch: Multiplicativity

Identity 3: T(m)T(n) = T(mn) for gcd(m, n) = 1

- ▶ The LHS, $T(m)T(n)[\Lambda]$, sums over chains $\Lambda \supset \Lambda' \supset \Lambda''$ with indices $[\Lambda : \Lambda'] = n$ and $[\Lambda' : \Lambda''] = m$.
- ► The total index is $[\Lambda : \Lambda''] = mn$. The quotient group Λ/Λ'' has order mn.
- ▶ By the Chinese Remainder Theorem, since m, n are coprime, Λ/Λ'' has a **unique** subgroup of order m.
- This unique subgroup corresponds to a unique intermediate lattice Λ' .
- ► This establishes a one-to-one correspondence between the terms on both sides.

Proof Sketch: Prime Power Recurrence

Identity 4:
$$T(p)T(p^n) = T(p^{n+1}) + pR_pT(p^{n-1})$$

Fix a sublattice $\Lambda'' \subset \Lambda$ of index p^{n+1} and compare its coefficient on each side.

- ► Case 1: $\Lambda'' \not\subset p\Lambda$
 - ► *LHS:* The coefficient is the number of intermediate lattices Λ' of index p. Such a Λ' must correspond to the same line in $\Lambda/p\Lambda$ as Λ'' , so there is only **one**.
 - ▶ RHS: $T(p^{n+1})$ contributes 1. The R_p term contributes 0.
 - ▶ Result: 1 = 1 + 0.
- ▶ Case 2: $\Lambda'' \subset p\Lambda$
 - ► LHS: Any lattice Λ' of index p contains $p\Lambda$ and thus Λ'' . There are $\mathbf{p} + \mathbf{1}$ such lattices (lines in an \mathbb{F}_p -plane).
 - ▶ *RHS*: $T(p^{n+1})$ contributes 1. The $pR_pT(p^{n-1})$ term contributes p.
 - Result: p + 1 = 1 + p.