§4. Modular Forms: Expansions at Infinity and the Discriminant Δ

All modular forms are for the full modular group $SL_2(\mathbb{Z})$. We index Eisenstein series by weight: G_{2k} , E_{2k} .

4.0 Recap

(1) Bernoulli numbers and $\zeta(2k)$. The Bernoulli numbers B_{2k} are defined by

$$\frac{x}{e^x - 1} = 1 - \frac{x}{2} + \sum_{k > 1} \frac{B_{2k}}{(2k)!} x^{2k},$$

and yield the special values

$$\zeta(2k) = (-1)^{k+1} \frac{B_{2k}(2\pi)^{2k}}{2(2k)!}.$$

These constants appear in the normalization of Eisenstein series.

(2) Eisenstein series G_{2k} and E_{2k} . For integers $k \geq 2$,

$$G_{2k}(z) = \sum_{(m,n)\neq(0,0)} \frac{1}{(m+nz)^{2k}}, \qquad q = e^{2\pi i z}.$$

One obtains the q-expansion

$$G_{2k}(z) = 2\zeta(2k) + \frac{2(2\pi i)^{2k}}{(2k-1)!} \sum_{n\geq 1} \sigma_{2k-1}(n)q^n,$$

where $\sigma_{2k-1}(n) = \sum_{d|n} d^{2k-1}$. The normalized form is

$$E_{2k}(z) = 1 - \frac{4k}{B_{2k}} \sum_{n>1} \sigma_{2k-1}(n)q^n,$$

For the full modular group one has the structure theorem

$$\mathcal{M} = \bigoplus_{k \geq 0} \mathcal{M}_{2k} \cong \mathbb{C}[E_4, E_6],$$

so every holomorphic modular form can be written as a polynomial in E_4 and E_6 . In particular $E_8 = E_4^2$, $E_{10} = E_4 E_6$.

4.1 Definition and Initial Expansion of Δ

Set $q = e^{2\pi i z}$, $z \in \mathbb{H}$. We will show that

$$\Delta = (2\pi)^{12} q \prod_{n=1}^{\infty} (1 - q^n)^{24}.$$

Recall that
$$\Delta = g_4^3 - 27g_6^2 = (2\pi)^{12} 2^{-6} 3^{-3} (E_4^3 - E_6^2)$$

= $(2\pi)^{12} (q - 24q^2 + 252q^3 - 1472q^4 + \cdots).$

whose coefficients define the Ramanujan function $\tau(n)$. The space $S_{12}(SL_2(\mathbb{Z}))$ is one-dimensional, so every weight-12 cusp form is proportional to Δ .

(Skip) How we derived $\Delta = g_4^3 - 27 g_6^2 = (2\pi)^{12} 2^{-6} 3^{-3} (E_4^3 - E_6^2)$.

(1) Classical relations. $g_4 = 60 G_4, g_6 = 140 G_6,$

$$G_{2k}(z) = 2\zeta(2k) E_{2k}(z) \Rightarrow \begin{cases} G_4 = \frac{\pi^4}{45} E_4, \\ G_6 = \frac{2\pi^6}{945} E_6. \end{cases}$$

(2) Express g_4, g_6 via E_4, E_6 . $g_4 = 60 \cdot \frac{\pi^4}{45} E_4 = \frac{4}{3} \pi^4 E_4$,

$$g_6 = 140 \cdot \frac{2\pi^6}{945} E_6 = \frac{280}{945} \pi^6 E_6 = \frac{8}{27} \pi^6 E_6.$$

(3) Plug into $g_4^3 - 27g_6^2$.

$$g_4^3 = \left(\frac{4}{3}\pi^4 E_4\right)^3 = \frac{64}{27}\pi^{12}E_4^3,$$

$$g_6^2 = \left(\frac{8}{27}\pi^6 E_6\right)^2 = \frac{64}{729}\pi^{12}E_6^2,$$

$$g_4^3 - 27 g_6^2 = \frac{64}{27} \pi^{12} E_4^3 - 27 \cdot \frac{64}{729} \pi^{12} E_6^2 = \frac{64}{27} \pi^{12} (E_4^3 - E_6^2).$$

(4) Rewrite the constant.

$$\frac{64}{27}\pi^{12} = \frac{2^6}{3^3}\pi^{12} = (2\pi)^{12}2^{-6}3^{-3}.$$

Therefore

$$\Delta = g_4^3 - 27 g_6^2 = (2\pi)^{12} 2^{-6} 3^{-3} (E_4^3 - E_6^2)$$

4.2 Proof of Modularity

Let $F(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$. It suffices to show

$$F(-1/z) = z^{12}F(z).$$

Introduce the double series

$$G_2(z) = \sum_{n,m}' \frac{1}{(m+nz)^2}, \qquad G(z) = \sum_{m,n}' \frac{1}{(m+nz)^2},$$

(with ' meaning $(m, n) \neq (0, 0)$),

Note on proof This formula is proved in the most natural way by using elliptic functions. For more details, A. HURWITZ, Math. Werke, Bd. I, pp. 578-595.

More notes on proof To prove that F and Δ are proportional, it suffices to show that F is a modular form of weight 12; indeed, the fact that the expansion of G has constant term zero will show that F is a cusp form and we know that the space of cusp forms of weight 12 is of dimension 1.

Back to the "proof". define the auxiliary series

$$H_2(z) = \sum_{n,m}' \frac{1}{(m-1+nz)(m+nz)}, \qquad H(z) = \sum_{m,n}' \frac{1}{(m-1+nz)(m+nz)},$$

where \sum' means the stated pairs $(m,n) \neq (0,0), (0,1)$. Using

$$\frac{1}{(m-1+nz)(m+nz)} = \frac{1}{m-1+nz} - \frac{1}{m+nz},$$

One finds that they converge, and that

$$H_2 = 2, \qquad H = 2 - \frac{2\pi i}{z}.$$

See if time for proof.

Moreover, the double series with general term

$$\frac{1}{(m-1+nz)(m+nz)} - \frac{1}{(m+nz)^2} = \frac{1}{(m+nz)^2(m-1+nz)}$$

is absolutely summable. This shows that $G_2 - H_2$ and G - H coincide $(G - H) = (G_2 - H_2)$, thus that the series G and G_2 converge (with the indicated order of summation) and that

$$G_2(z) - G(z) = H_2(z) - H(z) = \frac{2\pi i}{z}.$$

From this and the transformation $G_2(-1/z) = z^2 G(z)$ one deduces the key identity

$$G_2(-1/z) = z^2 G_2(z) - 2\pi i z. (45)$$

On the other hand, with the computation from Jasper, we have

$$G_2(z) = \frac{\pi^2}{3} - 8\pi^2 \sum_{n=1}^{\infty} \sigma_1(n) q^n.$$
 (46)

Now, for $F(z) = q \prod_{n \geq 1} (1 - q^n)^{24}$, its logarithmic differential is

$$\frac{dF}{F} = \frac{dq}{q} \left(1 - 24 \sum_{n,m=1}^{\infty} n \, q^{nm} \right) = \frac{dq}{q} \left(1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) \, q^n \right). \tag{47}$$

$$= (2\pi i dz) \left(1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n \right)$$

Comparing (46) and (47) gives

$$\frac{dF}{F} = \frac{6i}{\pi} G_2(z) dz. \tag{48}$$

Combining (45) (namely $G_2(-1/z) = z^2 G_2(z) - 2\pi i z$) with (48),

$$\frac{dF(-1/z)}{F(-1/z)} = \frac{6i}{\pi} G_2(-1/z) \frac{dz}{z^2} = \frac{6i}{\pi} \frac{dz}{z^2} (z^2 G_2(z) - 2\pi i z) = \frac{dF(z)}{F(z)} + 12 \frac{dz}{z}.$$
 (49)

Thus F(-1/z) and $z^{12}F(z)$ have the same logarithmic differential, so $F(-1/z) = k z^{12}F(z)$ for some constant k. Evaluating at z = i, we have $z^{12} = 1$, -1/z = z and $F(z) \neq 0$, so k = 1, proving $F(-1/z) = z^{12}F(z)$.

4.3 Ramanujan's τ -Function

We denote by $\tau(n)$ the nth coefficient of the cusp form $F(z) = (2\pi)^{-12}\Delta(z)$. Thus

$$\sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=1}^{\infty} (1 - q^n)^{24}.$$
 (50)

The function $n \mapsto \tau(n)$ is called the Ramanujan function.

Numerical table.

$$\begin{split} &\tau(1)=1,\quad \tau(2)=-24,\quad \tau(3)=252,\quad \tau(4)=-1472,\quad \tau(5)=4830,\\ &\tau(6)=-6048,\quad \tau(7)=-16744,\quad \tau(8)=84480,\quad \tau(9)=-113643,\\ &\tau(10)=-115920,\quad \tau(11)=534612,\quad \tau(12)=-370944. \end{split}$$

Properties of $\tau(n)$.

$$\tau(n) = O(n^6),\tag{51}$$

because Δ has weight 12 (sharpened by Deligne to $\tau(n) = O(n^{11/2+\varepsilon})$ for every $\varepsilon > 0$).

$$\tau(nm) = \tau(n)\tau(m) \quad \text{if } \gcd(n,m) = 1, \tag{52}$$

$$\tau(p^{r+1}) = \tau(p)\tau(p^r) - p^{11}\tau(p^{r-1}) \quad (p \text{ prime}, \ r \ge 1).$$
 (53)

Define the Dirichlet series

$$L_{\tau}(s) = \sum_{n=1}^{\infty} \frac{\tau(n)}{n^s},$$

then

$$L_{\tau}(s) = \prod_{p} \frac{1}{1 - \tau(p)p^{-s} + p^{11 - 2s}}.$$
 (54)

By a theorem of Hecke , $L_{\tau}(s)$ extends to an entire function in \mathbb{C} and $(2\pi)^{-s}\Gamma(s)L_{\tau}(s)$ is invariant under $s\mapsto 12-s$.

Congruences. $\tau(n)$ has various congruences modulo $2^12, 3^6, 5^3, 7, 23, 691,$

$$\tau(n) \equiv n^2 \sigma_7(n) \pmod{3^3},\tag{55}$$

$$\tau(n) \equiv n \,\sigma_3(n) \pmod{7},\tag{56}$$

$$\tau(n) \equiv \sigma_{11}(n) \pmod{691},\tag{57}$$

Open question. Lehmer (1943) asked whether $\tau(n) \neq 0$ for all $n \geq 1$; it is true for $n \leq 10^{15}$

4.4 Extra Notes

Explicit recap on dimension of cusp forms of weight 12. There are two spaces:

 $\mathcal{M}_{12} = \text{modular forms of weight-12}, \qquad \mathcal{S}_{12} = \text{cusp forms of weight 12}.$

Since $\mathcal{M} \cong \mathbb{C}[E_4, E_6]$, the weight-12 piece has basis $\{E_4^3, E_6^2\}$, so dim $\mathcal{M}_{12} = 2$. A cusp form must have zero constant term. Because both E_4^3 and E_6^2 start with constant term 1, the only way to cancel the constant term is their difference so:

$$S_{12} = \mathbb{C} \cdot (E_4^3 - E_6^2) = \mathbb{C} \cdot \Delta,$$

and dim $S_{12} = 1$.

Values of H(z).

$$H_2(z) = \sum_{n,m}' \frac{1}{(m-1+nz)(m+nz)}, \qquad H(z) = \sum_{m,n}' \frac{1}{(m-1+nz)(m+nz)},$$

with the prime indicating the omissions and the fixed order (sum in m first, then n). Use

$$\frac{1}{(m-1+nz)(m+nz)} = \frac{1}{m-1+nz} - \frac{1}{m+nz}.$$

(i) n=0 slice.

$$\sum_{m \in \mathbb{Z} \setminus \{0,1\}} \left(\frac{1}{m-1} - \frac{1}{m} \right) = 2,$$

hence both H and H_2 receive a contribution = 2 from n = 0.

(ii) $n \neq 0$ slices. For fixed $n \neq 0$,

$$\sum_{m \in \mathbb{Z}} \left(\frac{1}{m-1+nz} - \frac{1}{m+nz} \right) = \pi \left(\cot \pi (1-nz) - \cot \pi (nz) \right) = 0,$$

using $\sum_{m\in\mathbb{Z}}\frac{1}{m+a}=\pi\cot(\pi a)$ and $\cot(\pi(1-w))=-\cot(\pi w)$. Thus all $n\neq 0$ slices cancel formally. (iii) Conditional summation correction. With the prescribed order of summation and omissions, the $n\neq 0$ part of H acquires the standard correction $-\frac{2\pi i}{z}$ (from comparing $\sum_{m}\frac{1}{m+a}$ at a and a-1 near an integer). No such correction appears in H_2 due to the extra 1/m factor.

$$H_2(z) = 2, \qquad H(z) = 2 - \frac{2\pi i}{z}$$
.

Logarithmic differential of F. Let $q = e^{2\pi iz}$ and $F(z) = q \prod_{n \ge 1} (1 - q^n)^{24}$. Taking logs and differentiating,

$$\log F = \log q + 24 \sum_{n \ge 1} \log(1 - q^n),$$

$$\frac{dF}{F} = d(\log F) = \frac{dq}{q} + 24 \sum_{n \ge 1} \frac{-nq^{n-1} dq}{1 - q^n} = \frac{dq}{q} \left(1 - 24 \sum_{n \ge 1} \frac{nq^n}{1 - q^n}\right).$$

Using $\frac{q^n}{1-q^n} = \sum_{m \ge 1} q^{nm}$ and regrouping terms by r = nm,

$$\sum_{n \ge 1} \frac{nq^n}{1 - q^n} = \sum_{n, m \ge 1} n \, q^{nm} = \sum_{r \ge 1} \left(\sum_{n \mid r} n \right) q^r = \sum_{r \ge 1} \sigma_1(r) \, q^r.$$

Hence

$$\frac{dF}{F} = \frac{dq}{q} \left(1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) \, q^n \right). \tag{47}$$

From the known expansion

$$G_1(z) = \frac{\pi^2}{3} - 8\pi^2 \sum_{n=1}^{\infty} \sigma_1(n) q^n,$$

and $dq/q = 2\pi i dz$, we get

$$\frac{dF}{F} = (2\pi i \, dz) \left(1 - 24 \sum_{n \ge 1} \sigma_1(n) \, q^n \right) = \frac{6i}{\pi} \left(\frac{\pi^2}{3} - 8\pi^2 \sum_{n \ge 1} \sigma_1(n) \, q^n \right) dz$$

$$= \left[\frac{6i}{\pi} G_1(z) \, dz. \right] \tag{48}$$