
§4. Modular Forms: Expansions at Infinity and the Discriminant ∆

All modular forms are for the full modular group SL2(Z).
We index Eisenstein series by weight: G2k, E2k.

4.0 Recap

(1) Bernoulli numbers and ζ(2k). The Bernoulli numbers B2k are defined by

x

ex − 1
= 1− x

2
+
∑
k≥1

B2k

(2k)!
x2k,

and yield the special values

ζ(2k) = (−1)k+1B2k(2π)
2k

2(2k)!
.

These constants appear in the normalization of Eisenstein series.

(2) Eisenstein series G2k and E2k. For integers k ≥ 2,

G2k(z) =
∑

(m,n)̸=(0,0)

1

(m+ nz)2k
, q = e2πiz.

One obtains the q-expansion

G2k(z) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∑
n≥1

σ2k−1(n)q
n,

where σ2k−1(n) =
∑

d|n d
2k−1. The normalized form is

E2k(z) = 1− 4k

B2k

∑
n≥1

σ2k−1(n)q
n,

For the full modular group one has the structure theorem

M =
⊕
k≥0

M2k
∼= C[E4, E6],

so every holomorphic modular form can be written as a polynomial in E4 and E6. In particular
E8 = E2

4 , E10 = E4E6.
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4.1 Definition and Initial Expansion of ∆

Set q = e2πiz, z ∈ H. We will show that

∆ = (2π)12 q
∞∏
n=1

(1− qn)24.

Recall that ∆ = g34 − 27g26 = (2π)12 2−6 3−3 (E3
4 − E2

6)

=? (2π)
12
(
q − 24q2 + 252q3 − 1472q4 + · · ·

)
.

whose coefficients define the Ramanujan function τ(n). The space S12(SL2(Z)) is one-dimensional,
so every weight-12 cusp form is proportional to ∆.

(Skip) How we derived ∆ = g34 − 27 g26 = (2π)12 2−6 3−3 (E3
4 − E2

6).

(1) Classical relations. g4 = 60G4, g6 = 140G6,

G2k(z) = 2 ζ(2k)E2k(z) ⇒


G4 =

π4

45
E4,

G6 =
2π6

945
E6.

(2) Express g4, g6 via E4, E6. g4 = 60 · π
4

45
E4 =

4

3
π4E4,

g6 = 140 · 2π
6

945
E6 =

280

945
π6E6 =

8

27
π6E6.

(3) Plug into g34 − 27g26. g34 =
(
4
3π

4E4

)3
=

64

27
π12E3

4 ,

g26 =
(

8
27π

6E6

)2
=

64

729
π12E2

6 ,

g34 − 27 g26 =
64

27
π12E3

4 − 27 · 64

729
π12E2

6 =
64

27
π12 (E3

4 − E2
6).

(4) Rewrite the constant.
64

27
π12 =

26

33
π12 = (2π)12 2−6 3−3.

Therefore
∆ = g34 − 27 g26 = (2π)12 2−6 3−3 (E3

4 − E2
6) .
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4.2 Proof of Modularity

Let F (z) = q
∏∞

n=1(1− qn)24. It suffices to show

F (−1/z) = z12F (z).

Introduce the double series

G2(z) =

′∑
n,m

1

(m+ nz)2
, G(z) =

′∑
m,n

1

(m+ nz)2
,

(with ′ meaning (m,n) ̸= (0, 0)),

Note on proof This formula is proved in the most natural way by using elliptic functions. For
more details, A. HURWITZ, Math. Werke, Bd. I, pp. 578-595.

More notes on proof To prove that F and ∆ are proportional, it suffices to show that F is a
modular form of weight 12; indeed, the fact that the expansion of G has constant term zero will
show that F is a cusp form and we know that the space of cusp forms of weight 12 is of dimension
1.

Back to the ”proof”. define the auxiliary series

H2(z) =

′∑
n,m

1

(m− 1 + nz)(m+ nz)
, H(z) =

′∑
m,n

1

(m− 1 + nz)(m+ nz)
,

where
∑′ means the stated pairs (m,n) ̸= (0, 0), (0, 1). Using

1

(m− 1 + nz)(m+ nz)
=

1

m− 1 + nz
− 1

m+ nz
,

One finds that they converge, and that

H2 = 2, H = 2− 2πi

z
.

See if time for proof.
Moreover, the double series with general term

1

(m− 1 + nz)(m+ nz)
− 1

(m+ nz)2
=

1

(m+ nz)2(m− 1 + nz)

is absolutely summable. This shows that G2 −H2 and G−H coincide (G−H) = (G2 −H2), thus
that the series G and G2 converge (with the indicated order of summation) and that

G2(z)−G(z) = H2(z)−H(z) =
2πi

z
.

From this and the transformation G2(−1/z) = z2G(z) one deduces the key identity

G2(−1/z) = z2G2(z)− 2πi z. (45)
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On the other hand, with the computation from Jasper, we have

G2(z) =
π2

3
− 8π2

∞∑
n=1

σ1(n)q
n. (46)

Now, for F (z) = q
∏

n≥1(1− qn)24, its logarithmic differential is

dF

F
=

dq

q

1− 24
∞∑

n,m=1

n qnm

 =
dq

q

(
1− 24

∞∑
n=1

σ1(n) q
n

)
. (47)

= (2πidz)

(
1− 24

∞∑
n=1

σ1(n) q
n

)
Comparing (46) and (47) gives

dF

F
=

6i

π
G2(z) dz. (48)

Combining (45) (namely G2(−1/z) = z2G2(z)− 2πi z) with (48),

dF (−1/z)

F (−1/z)
=

6i

π
G2(−1/z)

dz

z2
=

6i

π

dz

z2
(
z2G2(z)− 2πi z

)
=

dF (z)

F (z)
+ 12

dz

z
. (49)

Thus F (−1/z) and z12F (z) have the same logarithmic differential, so F (−1/z) = k z12F (z) for
some constant k. Evaluating at z = i, we have z12 = 1, −1/z = z and F (z) ̸= 0, so k = 1, proving
F (−1/z) = z12F (z).
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4.3 Ramanujan’s τ-Function

We denote by τ(n) the nth coefficient of the cusp form F (z) = (2π)−12∆(z). Thus

∞∑
n=1

τ(n)qn = q
∞∏
n=1

(1− qn)24. (50)

The function n 7→ τ(n) is called the Ramanujan function.

Numerical table.

τ(1) = 1, τ(2) = −24, τ(3) = 252, τ(4) = −1472, τ(5) = 4830,

τ(6) = −6048, τ(7) = −16744, τ(8) = 84480, τ(9) = −113643,

τ(10) = −115920, τ(11) = 534612, τ(12) = −370944.

Properties of τ(n).
τ(n) = O(n6), (51)

because ∆ has weight 12 (sharpened by Deligne to τ(n) = O(n11/2+ε) for every ε > 0).

τ(nm) = τ(n)τ(m) if gcd(n,m) = 1, (52)

τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1) (p prime, r ≥ 1). (53)

Define the Dirichlet series

Lτ (s) =
∞∑
n=1

τ(n)

ns
,

then

Lτ (s) =
∏
p

1

1− τ(p)p−s + p11−2s
. (54)

By a theorem of Hecke , Lτ (s) extends to an entire function in C and (2π)−sΓ(s)Lτ (s) is invariant
under s 7→ 12− s.

Congruences. τ(n) has various congruences modulo 212, 36, 53, 7, 23, 691,

τ(n) ≡ n2σ7(n) (mod 33), (55)

τ(n) ≡ nσ3(n) (mod 7), (56)

τ(n) ≡ σ11(n) (mod 691), (57)

Open question. Lehmer (1943) asked whether τ(n) ̸= 0 for all n ≥ 1; it is true for n ≤ 1015
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4.4 Extra Notes

Explicit recap on dimension of cusp forms of weight 12. There are two spaces:

M12 = modular forms of weight-12, S12 = cusp forms of weight 12.

Since M ∼= C[E4, E6], the weight-12 piece has basis {E3
4 , E2

6}, so dimM12 = 2. A cusp form must
have zero constant term. Because both E3

4 and E2
6 start with constant term 1, the only way to

cancel the constant term is their difference so:

S12 = C · (E3
4 − E2

6) = C ·∆,

and dimS12 = 1.

Values of H(z).

H2(z) =

′∑
n,m

1

(m− 1 + nz)(m+ nz)
, H(z) =

′∑
m,n

1

(m− 1 + nz)(m+ nz)
,

with the prime indicating the omissions and the fixed order (sum in m first, then n). Use

1

(m− 1 + nz)(m+ nz)
=

1

m− 1 + nz
− 1

m+ nz
.

(i) n = 0 slice. ∑
m∈Z\{0,1}

( 1

m− 1
− 1

m

)
= 2,

hence both H and H2 receive a contribution = 2 from n = 0.
(ii) n ̸= 0 slices. For fixed n ̸= 0,∑

m∈Z

( 1

m− 1 + nz
− 1

m+ nz

)
= π

(
cotπ(1− nz)− cotπ(nz)

)
= 0,

using
∑

m∈Z
1

m+a = π cot(πa) and cot(π(1−w)) = − cot(πw). Thus all n ̸= 0 slices cancel formally.
(iii) Conditional summation correction. With the prescribed order of summation and

omissions, the n ̸= 0 part of H acquires the standard correction −2πi
z (from comparing

∑
m

1
m+a

at a and a− 1 near an integer). No such correction appears in H2 due to the extra 1/m factor.

H2(z) = 2, H(z) = 2− 2πi

z
.
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Logarithmic differential of F . Let q = e2πiz and F (z) = q
∏

n≥1(1 − qn)24. Taking logs and
differentiating,

logF = log q + 24
∑
n≥1

log(1− qn),

dF

F
= d(logF ) =

dq

q
+ 24

∑
n≥1

−nqn−1 dq

1− qn
=

dq

q

(
1− 24

∑
n≥1

nqn

1− qn

)
.

Using qn

1−qn =
∑

m≥1 q
nm and regrouping terms by r = nm,

∑
n≥1

nqn

1− qn
=
∑

n,m≥1

n qnm =
∑
r≥1

(∑
n | r

n
)
qr =

∑
r≥1

σ1(r) q
r.

Hence

dF

F
=

dq

q

(
1− 24

∞∑
n=1

σ1(n) q
n
)
. (47)

From the known expansion

G1(z) =
π2

3
− 8π2

∞∑
n=1

σ1(n) q
n,

and dq/q = 2πi dz, we get

dF

F
= (2πi dz)

(
1− 24

∑
n≥1

σ1(n) q
n
)
=

6i

π

(π2

3
− 8π2

∑
n≥1

σ1(n) q
n
)
dz

=
6i

π
G1(z) dz. (48)
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