Modular Forms Undergraduate Seminar Fall 2025

Austin Lei

September 8th, 2025

If you spot any errors, please let me know.

1.1 Organizational Stuff

- Email: austin.lei@columbia.edu. Feel free to email me if you have any questions or concerns. I will try to respond to you within one or two business days.
- Website for the course. Updates will be posted here, so please check back regularly!
- Tentatively, our course schedule looks like the following:
 - Friday, September 12th: Meeting #2.
 - Starting week of September 15th: Meet at Monday 4:30-5:30 pm, and Wednesday 4-5 pm.

If you have scheduling conflicts with this time, please let me know.

- Grading scheme:
 - Students will be expected to give a roughly equal number of talks. Assuming 7-8 students in the seminar, giving 1 talk will give a C, giving 2 talks will give a B, and giving 3 talks will give an A.
 - After 2 unexcused absences, each further unexcused absence will lower one's grade by a grade boundary (i.e. A to A-, or A- to B+). Please email me in advance if you have a conflict for a meeting.
 - While not required, providing notes for your own lecture or taking notes for the class for someone else's lecture will bump one's grade by a grade boundary (i.e. A- to A, or A to A+).
- A spreadsheet of talks/notes signups is here. Please avoid signing up for more than 3 talks until everyone has an opportunity to sign up for 3 talks. Topics are not listed for later talks a list of potential ideas is listed below, but you are welcome to talk about anything provided it is related to modular forms please talk with me to confirm!

1.2 What is a modular form?

As I put in the blurb for the course, modular forms are holomorphic functions that satisfy a lot of "symmetries". What does this actually mean? To start, let's define the simplest example of a modular form.

Definition 1.1. We denote the **upper-half plane** by \mathbb{H} :

$$\mathbb{H} := \{x + iy \in \mathbb{C} : y > 0\}.$$

We can define a group action on \mathbb{H} .

Definition 1.2. The group $SL_2(\mathbb{R})$ is the group of real matrices with determinant 1. Similarly, $SL_2(\mathbb{Z})$ is the group of real matrices with determinant 1. Moreover,

$$PSL_2(\mathbb{R}) := SL_2(\mathbb{R}) / \{ \pm I_2 \}.$$

Finally, $\operatorname{PSL}_2(\mathbb{Z}) := \operatorname{SL}_2(\mathbb{Z})/\{\pm I_2\}$ is the **modular group**. By abuse of notation, we often are sloppy between referring to SL_2 and PSL_2 .

We can define an action $\mathrm{SL}_2(\mathbb{R})$ on \mathbb{H} : for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R})$, and $z \in \mathbb{H}$, we have the action

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z = \frac{az+b}{cz+d}.$$

Here are some facts about this action.

• The action is well-defined; i.e. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z \in \mathbb{H}$.

Proof. One can show that
$$\operatorname{Im}(\alpha z) = \frac{\operatorname{Im}(z)}{|cz+d|^2}$$
.

- The action is continuous with respect to the standard topologies.
- The action is **transitive**; there is an $\alpha \in SL_2(\mathbb{R})$ sending any z to any z'.

Proof. One can send
$$i$$
 to z via $\begin{pmatrix} \sqrt{y} & \frac{x}{\sqrt{y}} \\ 0 & \frac{1}{\sqrt{y}} \end{pmatrix}$.

• Defining

$$\operatorname{PSL}_2(\mathbb{R}) := \operatorname{SL}_2(\mathbb{R}) / \{ \pm I_2 \},$$

the action of $\operatorname{PSL}_2(\mathbb{R})$ on \mathbb{H} is **faithful**; i.e. for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PSL}_2(\mathbb{R}), \begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z = z$ for all $z \in \mathbb{H}$ implies $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = I_2$. Equivalently, for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R}), \begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z = z$ for all $z \in \mathbb{H}$ implies $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \pm I_2$.

Proof.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z = z$$
 is a quadratic in z, so if equal for all z then $a = d = \pm 1$ and $b = c = 0$.

While we can define modular forms for more general groups, for now we will restrict our focus to the simplest group $SL_2(\mathbb{Z})$. It is in fact a discrete subgroup of $SL_2(\mathbb{R})$; i.e. the neighborhoods around any $\gamma \in SL_2(\mathbb{Z})$ embedded into $SL_2(\mathbb{R})$ are finite.

Remark 1.3. Why do we care about discrete subgroups? It will turn out when Γ is a discrete subgroup of $SL_2(\mathbb{Z})$, then the quotient space $\Gamma\backslash\mathbb{H}$ will have a nice (Hausdorff) topology. Modular forms will arise from studying these quotients, so having a nice topology will be good.

Definition 1.4. A modular form for $SL_2(\mathbb{Z})$ is a function $f: \mathbb{H} \to \mathbb{C}$ such that for any $z \in \mathbb{H}$.

- f is holomorphic on \mathbb{H} .
- f is holomorphic at the cusp at infinity; i.e. f is bounded as $z \to i\infty$.
- For some positive integer k, f satisfies the transformation property

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

for all
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
.

Here k is the **weight** of the modular form.

I'm being quite vague here in the definitions; I'll define what cusps mean later. For now, think of the first 2 conditions together as one unified holomorphicity condition. If you are not familiar with complex analysis, you should think of being holomorphic as being complex infinitely differentiable function – we'll give a crash course of the important complex analysis results you'll need later.

Remark 1.5. Is there motivation for the $(cz+d)^k$ factor? If one assumes that

$$f(\gamma z) = j(\gamma, z)f(z)$$

for some function j of $\gamma \in SL_2(\mathbb{Z})$ and $z \in \mathbb{H}$, then one can get $(cz + d)^k$ as a factor naturally. This will come up in the discussion of automorphy factors.

1.3 Why should we care about modular forms?

Here is a list of potential interesting applications/connections that could be of interest for future talks.

- Diophantine equations for example, one can count the number of solutions to $n = x^2 + y^2 + z^2 + w^2$ via modular forms.
- Elliptic curves the famous modularity conjecture (now a theorem!) states that all elliptic curves correspond to a specific type of modular form this was used to prove Fermat's Last Theorem.
- Combinatorics Modular forms will have a q-expansion (i.e. Fourier expansion), and the coefficients can be interpreted to have combinatoric results. The classic example are the Ramunjan congruences; for example, Ramunjan found that

$$p(5n+4) \equiv 0 \pmod{5},$$

which can be proved using modular forms.

- Sphere packing See this survey article by Cohn for more details. The work of Viazovska and others for sphere-packing in dimensions 8 and 24. The choice of function to optimize a sphere-packing bound turns out (almost magically) to be a modular form.
- String theory See here.
- Some other potential places to look: here and here.

Some other topics could be excellent choices for talks:

- Poincare series, towards the Petersson trace formula (see Milne or Iwaniec, as listed in the references for the course)
- Algebraic geometric view of modular forms modular forms arose out of the study of the geometry of certain modular curves. Milne would be a good resource for this.
- Representation theory modular forms can be interpreted in the language of representations of adelic groups. This also leads to the generalization of modular forms for higher rank groups $SL_n(\mathbb{Z})$ (Maass forms).
- Maass forms, but classically For $SL_2(\mathbb{Z})$ Maass forms, in particular, Chapter 3 of Goldfeld is an approachable place to start.
- \bullet L-functions of modular forms and the converse theorem Bump Sections 1.3/1.5 is one place to look, although a bit terse.
- Rankin-Selberg Method Bump Section 1.6 is one place to look, although a bit terse.

If any of these topics interest you in particular, please let me know and I can share more references!