Topics in Analytic Number Theory Notes
Austin Lei

Spring 2025

These notes were taken in the Spring 2025 version of the Topics in Analytic Number Theory Class, taught
by Dorian Goldfeld. If you spot any mistakes, please let me know.
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1 Lecture 1-1/21/25

The real content will start on January 30th. There are colloquium talks on Thursday and next Tuesday -
you are strongly recommmended to attend.

Some of the content in the course will follow his book Automorphic Forms and L-Functions for the Group
GL(n,R). When I refer to “Dorian’s book” in the notes, this is the book I refer to.

1.1

History of Analytic Number Theory
1700s - Euler invents the zeta function ((s) = >.°° , =, Discovers the Euler product

n=1 ns

(s)=TJa-p)"

P
Gets the functional equation for ¢ in special cases (like for s = 7).

1859 - Riemann gets the functional equation for all s; letting

&(s) = 7T (s/2)C(s),

with

he proves the functional equation

(s) =&(1—s)
How? Riemann uses the known identity
s VL

then applies the Mellin transform: for a smooth function f : R>o — C, the Mellin transform is

f(s) = fooo f (y)ysdy—y. (This arises from a change of variable from the Fourier transform). More
specifically, you have to take

- 3 —mnty _ S%—Tf‘_s s s
/O<Ze 1>yy— I(5)¢(25).

n=—oo

Dirichlet, 1800s: Taking x : (Z/qZ)* — C*, you get the Dirichlet L function L(s,x) = Y., x(n)/n®.
Shows that everything one can do with the zeta function can be applied to L-function. Can use them
to show that there are infinitely many primes in an arithmetic progression.

Hecke, early 1900s: Generalizes previous exponential sums to theta functions

9(2): i 627rin2z’

n=—oo

where z = x 4 iy € H. This function turns out to be modular: for (CCL Z) =Ty(4),

b _
0 <Z+ d) = 7' ye(d)Vez + db(2),

where x. is a Dirichlet character mod ¢ and ¢4 =1ifd =1 (mod 4) and —1 if d = —1 (mod 4).
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Hecke looks at modular functions: Recall that for (Z Z) € SL(2,Z), a modular function f satisfies

F(E5) =+ atie)

cz+d

for k € Z~o. This implies f(z + 1) = f(z), giving periodicity in the z direction. If f is holomorphic,
we get a Fourier expansion

oo
f(Z) _ Z ane%”’z.
n=0

Hecke defines the Hecke L-function

o0

an
L(87 f) = s
n
n=1
We also have S = (1) Bl € SL(2,Z), taking z — —1/z. This corresponds to taking y to 1/y.

This gives a functional equation for Hecke L-functions, with a symmetry on the completed L-functions
taking s - k — s.

Moreover, using Hecke operators, Hecke was able to show that Hecke L-functions have a Euler product.
Everything Hecke does can be generalized to subgroups of SLy(Z).
e Gelfand, Piatetski-Shapiro: Replace the upper half plane with matrices: points x + iy are replaced

with (g f) = ((1) 916) (g (1)) , where x € R and y > 0, and examine functions of the matrices:

f(2) is replaced by f ((g a;)) and f (gjig) =f ((i Z) (g a;)) How can you do this? Will

be explained later. They also introduced automorphic representations.

This course will primarily focus on SL(n,Z), especially when n > 3. Hence the matrix approach
becomes necessary.

e Jacquet-Godement: Introduced analogue of Hecke L-functions for cuspidal automorphic forms for
higher rank. Lots of results due to Shalika-Jacquet-Piatetski-Shapiro.

e Eisenstein series: Selberg proves analytic continuation and functional equation (proof involves Fredholm
operators). Langlands generalizes Selberg’s proof to arbitrary reductive groups. We will talk about
Eisenstein series for SL(n,Z) in this course.

1.2 Iwasawa decomposition for GL(n,R)

Before we mentioned functions of matrices as a replacement for functions on H. How do we make this work?
Recall that a matrix m € M, (R) is orthogonal if m - mT = I, or equivalently if all the rows/columns of m
form an orthonormal basis. We denote the set of such matrices O(n,R).

In particular, note that O(2,R) = { (ji 23?: j;i:;i) } )

Theorem 1.1 (Iwasawa). Every g € GL(n,R) is of the form
g = xykd,
where
e x is an upper triangular matriz with 1s on the diagonal, whose elements are denoted x;;, all real.

e y is a diagonal matriz, with y1ys . .. Yn_1 in the top left, y1ys ... yn_o in the next entry, going down to
1 in the bottom right, with all the y; > 0.

e ke O(n,R) = K, where K is used to denoted the mazimal compact group.
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e d is a diagonal matriz with dy on all entries on the diagonal, with dy # 0.

Example 1.2. In the GL(2,R) case, the Iwasawa decomposition g = <(1) :f) (g ?) kd. Hence we can

express
H= GL(2,R)/(O(2,R) - R").
In general, we get the generalized upper half plane

h" := GL(n,R)/(O(n,R) - R*).

Proof. Recall that a positive definite matrix is a matrix m € M (n, R) such that m is symmetric and xmaz? > 0
for all nonzero z € R™, or equivalently m is symmetric and all its eigenvalues are positive. Moreover, note
that for any u € GL(n,R), uu® is positive definite.

Consider any g € GL(n,R).

Claim 1.3. There exists upper triangular matriz u, lower triangular matriz ¢ and diagonal matriz d, such
that ugg™ = ¢d.

Proof. View this as solving for u. There are n(n — 1)/2 parameters for v and n(n — 1)/2 equations (the
upper elements of ¢d need to be 0). This can be solved because gg” is full rank. O

This gives that
99" =utd = dtT (uT) 7,

hence ¢du” = udl™. Note that the LHS is an lower triangular matrix, and the right is an upper triangular
matrix, so ud¢” = d*, some diagonal matrix.

Further manipulation gives that ugg? = d*(u”?)~!, so ugg?u” = d*. The LHS must be positive definite, d*
must consist of positive entries on the diagonal. Let a be its squareroot. Then we can write

(aug)(aug)” = I.
Hence aug € O(n,R), and hence we get the decomposition. O
Here is an alternative proof using Gram-Schmidt:

Proof. Let ay,...,a, be the column vectors of g~ € GL(n,R) and q1,...,q, be the outputs of the Gram-
Schmidt process for the a;. Let ¢ be the matrix with the ¢; as columns. The Gram-Schmidt process gives
us an upper triangular matrix r such that

g*1 =qr.

Taking the inverse precisely gives the Iwasawa decomposition for g, as desired. O




Austin Lei

2 Lecture 2 - 1/30/25

Last time, we talked about the Iwasawa decomposition. We defined
and showed that every g € h™ has the decomposition

1 Y1y2 - - - Yn—1
1 Tij Y1y2 - - - Yn—2

where the z;; € R and y; > 0.

Example 2.1. In the case n = 2, we have

v=(o )11

This is isomorphic to the upper half place, with z = x + iy, r € R, y > 0.
This has complex structure, making it easier to study (holomorphic modular forms). However, b™, forn > 3,
has no complex structure.

2.1 GL(n,Z) action on h"

We have an action of GL(n,Z) acting on h™, given via left-multiplication of matrices (modulo O(n, R) - R*).
This will be notated « - g, but sometimes I might be lazy and write it like pure multiplication.

Example 2.2. Consider a = , or equivalently z = x+1iy. (We will use g to denote

b) and g = <y

x
d 0 1
elements of h™, rather than z in Dorian’s book. We will reserve z for the classical n = 2 upper half plane
approach.) Then az = “Ztb and similarly for o - g

cz+d’
ooa— (W a+ bz
9= cy c+dzx)’

which we then need to quotient by the right element of O(n,R) - R* to get back into h™.

The theory of automorphic forms is all about functions
f:GL(n,Z)\h"™ — C.
do
do
Equivalently, for a € GL(n,Z), g € b, k € K = O(n,R), and d = ) , for dy = 0, we want

do
functions

flagkd) = f(g)-

Example 2.3. When n = 2, this is precisely the theory of modular forms.
In this case, we have the standard fundamental domain for SL(2,7)\bh?

{zeb?:|z] <1/2,]2] > 1}.

What is the area of this region? It is precisely the integral

1/2 /oo dxdy B Z
—1/2 J/1=22 y? 3




Austin Lei

az+b
cz+d”’

Here 428 s the hyperbolic measure. It is an tnvariant measure: it is invariant under the action z —
How does one show this? Note that we can write

d_1/0 .98
&z 2\az oy

4 _1(0 .0
dz 2\0z 0y)’
S0 % =1 and % = 0. Hence a holomorphic function can be defined as a function f : C — C such that

9 £ _
5=f=0.
Then we can express

and

dzdy ;idz/\dE
y2 4 Im(2)2’
where dz = dz + idy and dz = dx — idy.

Now, applying the action of (’O; g) € SLy(R) on the RHS and applying the quotient rule gives

. jaz+p8 az+B . d dz . _

S NS i G N Gaber _ —idzndE

4 2 T Y4 Im(z)? 4 Im(2)2
I (2257) RERIE )

hence the measure is invariant.
We'll want to generalize this idea to GL(n), but this approach doesn’t generalize naturally, since we lack
complex structure.

2.2 Invariant measure on §"

We will want to integrate GL(n,Z) invariant functions over h™, so we need to define an invariant measure.
Let g =2y € h™.

Proposition 2.4. The measure

n—1
dg _ H dxij <H y;kz(n—k)—l dyk>

1<i<j<n k=1
is invariant under g — ag with a € GL(n,R).

Proof. Tt suffices to prove that measure is invariant for a set of generators for GL(n,R). In particular,
GL(n,R) is generated by matrices B,,, W,,, D,,, where B,, are upper triangular matrices, W,, is the Weyl
group of GL(n,R) (the set of all matrices in GL(n,Z) with precisely one 1 in each column and row), and

aiag ...anpn—1
a1ag ...Aanpn—2

ai

are diagonal matrices.

Remark 2.5. Why this notation for the diagonal matrices? Since we quotient out by R*, we can have the
lower right element be 1. The formulas are all nicer with the a; written this way. (There’s also intuition
involving root systems that Dorian doesn’t want to get into.)
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ai1ag...apn—1
a1ag ...0pn—2
First, we check the invariance under the action by D,,. Let a =
a
1

For any g = xy, we can write ag = (axa~1)(ay), where (axa™!) is an upper triangular matrix with 1s on
the diagonal and

n—i
(axail)ij = H ag | xij
k=n—j+1
for all 7 < j, and
n—i
(ay)ii = H(akyk)-
k=1

Plugging everything in, the a; will all cancel, giving the desired invariance.
Dorian leaves the invariance by the upper triangular matrices and Weyl elements to the reader. Alternatively,
details can be found in his book (Section 1.5). O

2.3 Siegel’s theorem for the volume of the fundamental domain
Let T',, = SL(n,Z).

Theorem 2.6 (Siegel, 1936).

Vo, \b™) = n2" ' ] Vof(gz_l),
£=2

where
2(v7)*
VANt
T (z)
The proof will require (a generalization of) the Poisson summation formula. Recall the standard Poisson
summation formula:

Vol(S*~1) =

Proposition 2.7 (Poisson summation). Let f : R — C be a smooth function (with some technical conditions,

i.e. exponential decay). Then R
Y fn)=>" fn),

neZ nez
where J?(y) = ffooo f(u)e=2™Wu du is the Fourier transform.

Proof. Define the new function G(x) = >, ., f(z +n). Note that G(z + 1) = G(x), so we have a Fourier
expansion

G(I’) _ Z Ak627rikx

kez
where

1
Ay :/ G(u)e 2™k dy
0

Hence

1
G(z) = Z (/0 Z F(u+ n)e=2miuk du) 2k

keZ ne”Z
o .
— Z/ f(u)e—%mu(k—ar) du,
kez "’ —°
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so we conclude that

> ftatn) = X i

nez k
Substituting = = 0 gives the result. O

In particular, we will need a GL(2) version of Poisson summation.

Proposition 2.8 (Poisson summation for GL(2,R)). Consider a smooth, compactly supported function
f:R?/SO(2,R) — C; i.e. f((u,v)k)= f((u,v)) for any (u,v) € R? and k € K = SO(2,R). Then we have

men men gh)™h.

(m,n)€Z (m,n)€Z?

Here f is the (double) Fourier transform

fean= [ [ s aan,

Y2 gy1/?
Proof. Consider g € SL(2,R) of the form g = < 0 /2 ) We define
= > flmn)-g)= > flmy'* may ' 0y,
(m,n)€Z? (m,n)€Z?

and for fixed g and n, define
n) = Z f(my1/2,mxy_1/2+ny_1/2).
meZ
By standard Poisson Summation (in n),
=Y Gy(n) =) Gy(n)
nez nez

Hence

Z f(mylﬂ,mxy*lﬂ + ny71/2 Z / f my mxy —1/2 + uy71/2) —2miun g,

n)EZ (m,n)€Z?

where above the Fourier transform is taken only in the n variable.
We now do the same thing in the m variable. Define

Z/ Flmy™2, may=Y2 4+ uy=1/2)e=2miun gy,
nez
Poisson summation again gives that

=3 Hy(m)=" Hy(m

meZ meZ

Hence, we can write
o0
F(g) — Z Z/ f(vyl/z,vacy_l/Q + uy—1/2)e—27rinue—27rimv dudo.

Making the transformation v’ = vy/? and v/ = vy~ /2 4+ uy~'/? finishes the proof. O
We'll get to Siegel’s proof next time.

Remark 2.9. Siegel’s proof for the volume of the fundamental domain was generalized by Langlands in the

paper The volume of the fundamental domain for some arithmetic subgroups of Chevalley groups, Proc AMS,
1965.

10
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3 Lecture 3 - 2/4/25

3.1 Fundamental Domains

Consider a topological space X and group G, with G acting on X. Recall that a (left) group action is a map
o0:G x X — X such that eox =z for all z, and (g1g2) o x = g1 © (g2 0 x).

Proposition 3.1. GL(n,Z) acts on ™ = GL(n,R)/(O(n,R)-R*). Ify € GL(n,Z) and g € h, yog:=7v-g
as matriz multiplication.

Proof. This is clear. O

Note that
h" = GL(n,R)/(O(n,R) - R*) = SL(n,R)/SO(n,R).

Hence we can talk about the action of SL(n,Z) on h™ = SL(n,R)/SO(n,R) (via matrix multiplication).
What is a fundamental domain for this action?
Recall that a fundamental domain for G acting on X, typically denoted G\ X), has the properties

e Every x € X is equivalent to some y € G\ X, where = g oy for some g € G.
e No two points in the fundamental domain are equivalent to each other.

In the n = 2 case, we have the standard fundamental domain
1
SL2 N = {s =4y € | fol < 3 112 1.

To generalize this idea, we will consider a Siegel set:

P

‘ 1
={m+zy€h2llw|<,y>}~

)
3 2 2

N

)

This set is bigger than the fundamental domain, but small enough to be a good approximation for analytic
purposes. Specifically,
y€ESL(2,Z)

Theorem 3.2 (Siegel). The Siegel set for SL(n,Z)\b™

satisfies

YyESL(n,Z)

The proof can be found in Dorian’s book.

3.2 Volume of fundamental domain SL(2,7Z)\h?

Last time we stated

Theorem 3.3 (Siegel, 1936).

w o on1 7T S
Vol(T,\b™) = n2 1gm,

where

Vol(§°~1) =

11
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The proof is inductive, so we’ll want to prove the statement for n = 2.

Proof for n = 2. Let K = O(2,R). Consider a smooth and compactly supported function f : R?/K — C.

We can then define
F(g)= Y f((mn)-g),
(m,n)€Z?

where multiplication is taken as a row vector multiplied by a matrix. Since f is right-invariant by K, we
have that

F(gk) = F(g)
for all g € GL(2,R) and k € K.
Claim 3.4. F(yg) = F(g) for all v € SL(2,7Z).
Proof. Let v = a b € SL(2,Z). Since we want g € SL(2,R), we take g = Lox) (4 0 The
T00f. =1, 4 , 7). Since we want g ,R), wi 9=y 1 0 yuz) n
Flyg)=Y_ f ((m n) (a b) g)
’ c d
(m,n)
1 z\ (y'/? 0
= Z F <(am—|—cn,bm—|—dn) (O 1) ( 0 42
(m,n)
1 z\ [(y'/? 0

M,N

which proves the claim. Here there are no convergence issues because f has compact support. O

Next, letting I' = SL(2,Z), consider

1 xz\ [(y/? 0 dx dy
ros= () (0 ) 5
/r\h2 ) rpz o \\O LS00 g2 )y

Again, this integral converges because f is compactly supported.
Note that we can write

{(m,n) [m,n ez} ={0,0}u |J {01},
’yeel“:&l\l“

where I'o, = { <1 71ﬁ> | re Z} . This follows because

0
T\ = {(Z Z‘l) | (c,d) = }

/ LF@d= [ F00ds [ 5730 o dg

T\D? =1 yeT o \T

— F((0,0)) - Vol(T\b?) + 2 / S ((0,0) - g)dg,

oo \b? y—1

Thus,

where the factor of 2 arises because —I, € I fixes h2.

12
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Hence

_ - 1 2\ (y/2 0 ))dxdy

[, Flords = Po.0) - Vo) +2 | N;f( (o (% 0
> _ dx dy
04 1/2y) —<
m\hzz ) Y

= F((0,0)) - Vol(I'\h?) + /FO/ Zf<0 ¢ _1/2)) dzdy

y=0 y=1

— F((0,0)) - Vol(T\b2) +2/

Taking the transformations y — £2y in the first line and then y — 32

I CIEDE - SLT A P>
=0 Oll z=0 O@l

2)/0 £((0,9)) ydy.

in the second line, we get

1 dxd
y~12)) = Y
)) 2 y?

. . o . . 0 —sind
Now, we convert to polar coordinates. Since f is right invariant by k = (Z?ﬁ 0 czlsnﬁ ) €K,

F((0,9)) = f((ysinb,y cos 0))

for any 6.
Thus we get that

/ ((ysind,ycos®))ydydd

2
_2C2/ f(u,v)dudo = L@)
m

s

F((0,0).

Hence we have shown that

2€(2) 7

/ Flg)dg = £((0,0))Vol("\b?) +
r\p2

Now, consider replacing f by f By Poisson summation for GL(2,R),

Yo fmm)g) = > F(mn)(gh) .

(m,n)€z? (m,n)€z?

We can replace g by (g7)~! in all of the computation above, and nothing would change. Hence, we get that

%)

., @0 = F. 0V + % E (0.0,

using that A(x) = f(—xz). Subtracting the two equations and solving for the volume gives the desired
formula. 0

Next time, we will finish the proof for general n.

13
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4 Lecture 4 -2/6/25

4.1 Volume of fundamental domain SL(n,Z)\h"
This time we will finish the proof of Siegel’s theorem:

Theorem 4.1 (Siegel, 1936).

)
VolT,\b") = n2 EW
where Q(XF)[
Vol(S4—1) — LA
ST

We proved it for n = 2 last time. Now we will finish the proof for n > 2 inductively.
We will use the Poisson summation formula for GL(n,R):

Proposition 4.2. For a function f: R"/K, — C, where K,, = O(n,R), we have that
S fmeg)= 3 Fom- (6T,
meZ" meZ™

We showed this for n = 2; it can be generalized to higher n inductively.

Proof of Siegel’s Theorem. For more details, one can check Dorian’s book, section 1.6.
Let I';, = SL(n,Z). Recall that for g € h™, we write g = xy with the usual notation for z and y. We want
to this to lie in SL(n,R)/SO(n,R), so we instead consider

Yiy2 -« - Yn—1t
Y1y2 - - - Yn—2t

y1t

-1
where t = (H;L:_ll y; )

Emulating the proof for n = 2, let f : R"/K, — C be a smooth and compactly supported function. Again

we define
F(g)= Y f(m-g).

mezZ"

Then we can show F(vg) = F(g) for all v € SL(n,Z).
Definition 4.3. The mirabolic subgroup of GL(n) is

P”:{(O 0o .. 0 1)}

F(g) = f((0,...,00)+> > f(t-en-79),

(=1 yeP,\T'y,

Then one can check that

where e, = (0,...,0,1).
Now, we have that

AR (RSO TUATERS B DI DR (GTReL”

\b" =1 ~veP,\I'y,

= £((0,...,0))Vol(T,\h™) + 2 (e, -g)dg,
O OV +237 [ e g) s

14
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where the factor of 2 appears because —I,, € T',, fixes h™, and —I,, € T, for n even and € D(n,R) for n odd.
Now we can write

1 Y1y2 - - Yn—11t
1 Tij Y1y - Yoot , )
, . . Ly ) (T L
: : t t
1 ylt
1 t
1 Tin
1 Ton , 1
_ . . g tmn1l, 4
= . : 1 ;
1 Tn—1,n
1

where ¢’ is the n — 1 by n — 1 matrix

1 =z T T p— _
112 x;i x;n 1 Yiys - . Yp—1t™/ D
, - a0
g = S ) €h
1 xnfi,n 1 yltn/(n—l)

Recall that

dg = H dxy; H Ty,

1<i<j<n k=1
and we have that
n—2
—k(n—k—1)—1
dg’ = H dz; yk+§n gy
1<i<j<n—1 k=1
Computation thus gives us that
dg=—— dg H dz;n t”—.

Now, to apply induction, we will want to relate P,\h™ to T',_1\h" L.

Every p € P, is of the form
_ (v b\ _ (In—1 b) (v
()=

with T' € SL(n — 1,Z) and b € Z"~1. Moreover, every g € h™ is of the form

_ gl U t_”%lln—l _ Infl u gl t_”%lfn_l
g 1 t 1 1 t)’

Ul,n
U2.n

where

Un—1,n

15
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Then

po= () D )T )

Let U, (Z) denote matrices with 1s on the diagonal, integers in the right most column, and Os elsewhere, and
similarly for U, (R).

Lemma 4.4. Fiz a v € SL(n — 1,Z). We have an action of U,(Z) on R"™1 given by left multiplication of

Un(Z) on <’y 1) - Upn(R), with fundamental domain given by

Moreover,

Proof. One can write

J ()0 =)

mezZn—1

U () e =)

:<’Y 1) U (In—l (Z\R)"iJr’Ylm)

Hence, examining our expression p - g and applying the lemma, we get the decomposition

P \D"™ 2 (SL(n — 1, Z)\b" ") x (Z\R)" ™" x (0, 00).

flteng) = f (een (9' 1{) (t"llfnl t)) = f(ttey).

oo

o) n—1
n > d¢
2 / f(l-e,-g)dg=2—— / dg / dx; p (/ f(ften)t”> )
; P,\b™ n—1 Zl T,o1\bn—t (Z\R)n—1 i1 0 t

Moreover, note that

Thus we can write

= i

By induction, the first integral on the RHS is the volume T',_;\h" L. The second integral is 1. Thus, it
suffices to compute the third integral.

Making a transformation ¢ — %, we have that

[ LAt > L dt
> | rtetener S =cm [ pete, i

Lemma 4.5. R
> At f((0,...,0))
/0 flten)t" 5 = oy -

16
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Proof. Use the n dimensional spherical coordinates

21 =1t(sinf,—1) - (sinbs)(sin ;)

To =t(sinb,_1) - (sinbs)(cos )

Tp—1 = t(sinb,_1)(cos b, _2)

T, =tcosb,_1

In particular, note that 2 + -+ + 22 = 1. We have the invariant measure on S™~1
do = JJ (sin6;)’~"dj,
1<j<n

SO
dzy---da, =t" 1 dtde.

This measure is invariant under rotations, so

f((0,...,0,t)) = W/S”ilf(xl,..-,xn))d@,

and thus

S S =
/0 F(Oo 0.0 = oy [ S @) dor ey, = F(O....0)),

where we apply polar coordinates. O

This gives the formula

_ " n_ f(©,...,0) et
[ F@ds = s opvelr, ) + 27 G ol )

Now, we repeat the same process replacing f and f, using the Poisson summation formula. Since the
computation remains the same with (¢g7)~! in place of g, we get that

Y " n F((0,...,0)) .
/ L Plo)dg = F0. Vol )+ 2 K vl

~

Choosing f such that f((0,...,0)) # f((0,...,0)) and manipulating the two equations gives the inductive

formula
n 1

n—1 Vol(Sn1)
which finishes the theorem. ]

Vol(T,,\b") = 2 -Vol(I'p—1\p" ")

Next time, we start the theory of automorphic forms.

17
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5 Lecture 5-2/11/25

Today, we will briefly review the theory of GL(2) automorphic forms using Langlands parameters. A reference
for more details is Dorian’s Chapter 3, but be aware that everything needs to be converted from spectral to
Langlands parameters.

5.1 Laplacian for GL(2)

Recallthath2={((l) f) (g (1))|xE]R,y>O}.

Definition 5.1. We have the (hyperbolic) Laplacian

0? 02
A= —=+=—=).
Y (3062 " 81/2)
For the real line, the Laplacian is %, which is invariant for x — xz+1. Analagously, the hyperbolic Laplacian
behaves similarly.
Proposition 5.2. A is invariant under SL(2,R): for all v € SL(2,R), Ag = A(~g).

We will discuss a proof later involving Lie theory, but we’ll start with a classical proof, which doesn’t
generalize to higher rank, since for higher rank we no longer have the complex structure.

Proof. Recall that we have
such that 8% =1, and

that kills all holomorphic functions.
Note that we can write

d d
A =41 _—
m(2) 7, &
For any (Z Z) = SL(2,R), we have that
d 2
— = (cz+d)*—
dcz—td d
and d d
_ (= 2 -
daz+b B (CZ + d> dz’
cz+d
and since
- az+b\ 1
cz+d) ez +d?’
A remains invariant. O

Remark 5.3. A being SL(2,7)-invariant implies that Af(vg) = Af(g) for any v € SL(2,Z). This is good;
we will want our operator to send automorphic functions to automorphic functions.

18
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5.2 Maass forms for SL(2,7Z)

We are now equipped to discussed automorphic forms on GL(2).

Definition 5.4. A Maass form for SL(2,7) is a smooth function f :h? — C such that
o Automorphic condition: f(vyg) = f(g) for all v € SL(2,Z) and g € GL(2,R).
o Af=M\f for some A € C.
e Growth condition: |f(g)| <y~ for some B >0 and y — oc.

Remark 5.5. The only holomorphic function of this type are the constant functions. However, there exist
non-holomorphic examples - namely the Maass forms.

Remark 5.6. We in fact can assume that A € R, rather than in C. To see this, we have an positive
definite inner product for Maass forms

_ ——dxdy
= R

By applying Green’s theorem, one can show that

(Af, )= (f,.Af),
so for f a Maass form, we conclude that the A are real and positive.

In the previous definition, we say that A is the spectral parameter of the Maass form f. Its corresponding
Langlands parameter is o = (o, —ayp), where 1 — a2 = \.
In general, on GL(n), a Langlands parameter is a vector of the form

(o1,...,0) €C?

where a3 + --- 4+ a, = 0. We will be able to associate a Langlands parameter to every Maass form for
SL(n,Z).
We now give a broad survey of results in the GL(2) theory.

Remark 5.7. It is conjectured that there is only one Maass form (up to constant multiple) for each eigenvalue
\; the best known upper bound is v/\.

Remark 5.8. It is difficult to construct SL(2,7Z) Maass forms - the proof of existence was first shown using
the Selberg trace formula. Moreover, it also shows that the set of Maass forms is countable.

Conjecture 5.9 (Selberg Eigenvalue Conjecture). A\ > %.

Remark 5.10. This bound is tight - one can construct Maass forms of eigenvalue % using the Gelbart-Jacquet
lift from GL(2) to GL(3).

The conjecture can be proven when the fundamental domain is a triangle, so it has been proved for SL(2,7).
However, it is not proved for congruence subgroups of SL(2,7Z), or for higher rank. Weaker lower bounds
have been shown, but getting the optimal i bound would improve error terms in applications.

Remark 5.11. Due to a result by Luo-Rudnick-Sarnak, the Ramanujan conjecture on the Fourier coefficients
of Maass forms should be seen as roughly the same difficulty as the Selberg Eigenvalue conjecture from the
adelic/representation point of view.
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5.3 Fourier expansion of GL(2) Maass forms
Take g = (Zé gf) € GL(2,R), and let f be a Maass form with Langlands parameter o = (g, —cg). Note

ws((s )= TG )

so we have periodicity as  — x + 1. This gives a Fourier expansion

=% [((5 1)o)eroe

Note that there is no constant term because of the polynomial decay of the Maass form. We can define

Wlo) = | 1f(<(1) ”;‘) g) e2mim gy

We note that this satsifies some nice properties:

o AW,(g) = (% — a?) Wa(g)

.« W, <<(1) 11’) g> — 2Ty ().

Moreover, W, inherits the growth properties of the Maass form.

that

Definition 5.12. We say that any (smooth) function satsifying these three conditions is a Whittaker
Junction with Langlands parameters c.

In GL(2), we can write out these Whittaker functions explictly in terms of Bessel functions.
First, note that by the second property above, we can rewrite our Fourier expansion as

-5 1 )
AT,

n#0
Yy 0 —2minu 2minx
0 1)) du) e .

(
o

Then our Fourier expansion can be written as
E A 27mn:v
n#0

where A, (y)e?™ "% = W, (g).
Let’s examine the differential condition. We know that

9) =Y Ad,(y)e”

n#0
02 0? ,
— a2 2= 2minx
— Z A// 47r2n2An(y)) e27rin:r.
n#0
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We also have that

Hence for each n we get the differential equation
1
(5 02) 4nl) = 27 (4100) — 4702 4,0)

Because the Maass form (and hence the Whittaker function) has polynomial decay, the second order dif-
ferential equation has a unique solution (up to constant) in terms of a Bessel function, giving the Fourier

expansion
£lg) =Y aln)/2myKa(2rIn|y)e’™ ",
n#0
where 1| o d
1 u
KO( = — _Ey(u+1/u) Q-
=) [ et

is the Bessel function. We remark that this function has exponential decay in y.
To the Fourier expansion we associate the L-function

Li(s) =Y a(f).

n

This L-function will have a functional equation and Euler product.

5.4 Eisenstein series for GL(2)

We briefly discuss the theory of Eisenstein series for GL(2).
We have the classical construction of the Eisenstein series

E(z,s) = Z (Im vz)®

€T \SL(2,Z)

1 m
wherefooz{(o 1) |mEZ}.

We call Im(z)® = y° the power function - this will generalize for GL(n).

The Eisenstein series satsifies all the properties of a Maass forms except for the growth condition; instead,
we have polynomial growth: |E(z + iy, s)| < yP(s) as y — oo with B(s) > 0.

By normalizing by the proper gamma factors, and letting E*(z, s) be the normalized Eisenstein series, we

get the functional equation
E*(z,8) = E*(z,1 — s).

Definition 5.13. We say that an automorphic form (i.e. Fisenstein series or Maass form) f for SL(2,7)
has spectral parameters A\ = s(1 — s) if [ has the same eigenvalues as y* under A.

We can also define the Eisenstein series in terms of Langlands parameters. Letting o = (ag, —cvp), we have
the corresponding power function y%"’ao and thus corresponding Eisenstein series

E(a,g) == Z (Im’yz)%+°‘° .
YET 0 \SL(2,2)

With the correct normalization by Gamma factors again, this gives the functional equation

E*((a07 70‘0)39) = E*((fo‘Oa aO)ag)v

in other words, we can replace ag with —ayq in the definition of the Eisenstein series and everything is the
same.
To summarize, we reiterate the definition of a Maass form with Langlands parameters.
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Definition 5.14. A Maass form with Langlands parameters o = (ap, —ap) is a smooth function
f:h2 = C such that

e f(v9) = f(g) for all v € SL(2,Z) and g € GL(2,R)
o Af = M\f, where X is the eigenvalue of the power function y%+0‘0 under A.
e |f(g9)| <y B for some B> 0 and y — oo.

This will be the definition of Maass form we use going forward.

5.5 Invariant differential operators on h”

We want to generalize all of the above theory to GL(n), so we’ll first need to describe the invariant differential
operators on GL(n).
Recall the Iwasawa decomposition ¢ = zy. An invariant differential operator will be some polynomial in

af” and 61. To describe precisely what these are, we will turn to Lie theory.
ij Yk

Definition 5.15. A Lie algebra L over a field K is a vector space over K equipped with the Lie bracket,
a bilinear map [-,-] : L X L — L such that for all a,b,c € L and o, 8 € K,

o [a,ab+~d] = ala,b] +~[a,
o [a,a] =0

o [a,b] = —[b, .

o [a,b,d]] + b, [, al] + ¢ [a, b]] = 0.

Example 5.16. We have gl(n,R), the Lie algebra of GL(n,R), is the additive vector space of all n X n
matrices in R, with Lie bracket [a,b] =a-b—1b-a.

Now we can construct the differential operators. Let a € gl(n, R). Define

0
Daf(9) = Flgexp(ta)) =y,
where exp(ta) = 3,2, % (ta)’.
Next time, we will show that the ring generated by all the D,, is the universal enveloping algebra of gl(n,R),
and construct differential operators using this.
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6 Lecture 6 - 2/13/25

6.1 Lie theory on gl(n,R)
We’ll want to use the theory of Lie algebras to define invariant differential operators.
Definition 6.1. An associative algebra over a field K is a vector space A over K such that

e we have an associative product - : A x A — A such that for all a,b,c € A and o, 3,7 € K,
a-(Bb+~c) = Ba-b)+~(a-c),

and
(aa+ Bb)-c=ala-c)+ B(b-c).

Definition 6.2. A Lie algebra is a vector space L over a field K with a Lie bracket [-,-] : L x L — L such
that for all a,b,c € L and B,v € K

e [a,ab+ vc| = ala,b] + v[a, (]
e [a,a] =0
* [av [ba C]] + [bv [C’ a]] + [C, [a’ b]] =0.

Given an associative algebra over K, we can construct a Lie algebra by defining [a,b] = aob—boa. One
can check that this satisfies the definition of a Lie algebra.

Definition 6.3. A derivation on an associative algebra A is a K-linear map D : A — A such that
D(zy) = (Dx) -y + x - (Dy) for all xz,y € A.

Definition 6.4. The derivations on an associative algebra form a Lie algebra, with Lie bracket
[D,D')=DoD"—D" oD,
where o s composition.
Proof. To prove that this is a Lie algebra, we need to show
(D, D')(zy) = ([D,D']x) -y + = - ([D, D'ly).

We have that

D'z)-y+az-(D'y))
D'z)-y) + D(x - (D'y))
Do D"z y+ (D'z) - (Dy) + (Dz) - (D'y) + 2 (D" o D)y.

I
—

Similarly,
(D' o D)(xy) = (D' o D)a -y + (Da) - (D'y) + (D'x) - (Dy) + - (D o DYy,

and subtract the two gives the desired result. O

Given an associative algebra A, we can construct an associated Lie algebra L(A) (by the aob—boa
construction). It is also possible to start with L(A) and go back and recover the associative algebra (the
universal enveloping algebra). This can be constructed in general with universal properties, but we will
only construct it for the specific case we care about.
We start with GL(n,R), a Lie group. Its corresponding Lie algebra is gl(n,R), the vector space of n x n
matrices over R with Lie bracket

[a,b] =a-b—b-a,
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where the - denotes matrix multiplication. Motivated by the previous discussion, we want to construct a
derivative on gl(n,R).
Consider a smooth function F : GL(n,R) — C, and consider any o € GL(n,R). Then we define

0
D, F(g) :== &F(Q - €")|¢=o,

where t is a real variable and

0 ¢
ta (tOé)
e = Z 1
£=0
is the matrix exponential. Since we only consider the first order partial derivative, this is equivalent to
0
DaF(g) = 5, F(g +tga)|i—o.

Example 6.5. Let g = (Z Z) e gl(2,R), let F(g) = F <<Z Z)) =a+2b+c*—3d, and let o« = <8 (1))

Then
a b 0 a b a b\ (0 1
por (e a)=arr (o) (o) 0 o))
0 a b+at
=l <(c d+ct>> le=0
= 2a — 3c.
Proposition 6.6 (Properties of D,,).
[ ] DOH_@ = Da + Dﬂ
® DooDpg—DgoDy = Diypg

Proof. Treating F' as a function of n? variables (n x n variables), we can apply the standard multivariate
chain rule

DaF(9) = = [ YD (9+1t90)ij - 5—F(g+1tga) | li=o = D> > (9a)i; - 5 —F(9),
o\ = j=1 9gi =1 99ij
where (g + tga);; denotes the ¢, jth element, and then we get the first equation.
Applying a similar computation for D, 0 Dg — Dg o D, gives the desired result. O

With these properties, we have constructed the universal enveloping algebra of gl(n, R), denoted U (gl(n,R)),
the algebra of all of these operators D,. (We still need to show that the kernel of the map a — D, is trivial;
see Goldfeld-Hundley Lemma 4.5.4.)

6.2 Center of the universal enveloping algebra of gl(n, R)

We want to find all elements D € U(gl(n,R)) that lie in the center ZU(gl(n,R)); i.e. [D,D’] = [D’, D] for
all D' € U(gl(n,R)). Why do we care?

Proposition 6.7. Let F' : SL(n,Z)\b™ — C an automorphic form; i.e.

f(vgkz) = f(9)

forally € SL(n,Z),k € K = O(n,R), z € Z,, (diagonal elements with the same element along the diagonal).
If D € ZU(gl(n,R)), then
(Df)(vgkz) = Df(g)

for all v,k, z; i.e. D will send automorphic forms to automorphic forms.
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Proof. For all D € U(gl(n,R)), we have that
(DF)(v9z) = DF(g)-

In particular,

d
= F(ge')|i=0 = DF(g),

0
—F(geto‘z)|t:0 =5

(DaF)(r92) = 5 -

5 F(r9z¢")li=0 =
using that z commutes with everything in GL(n,R).

It remains to prove that (DF)(gk) = DF(g) for k € K = O(n,R). Since —I,, € Z,, it suffices to prove the
condition for k € SO(n,R).

Let h € gl(n,R), such that h + hT = 0; i.e. h € s0(n,R). For u € R, define

$(u) := D(f(ge"")) — (Df)(ge"").

Note that ¢(0) = 0. We want to show that ¢ = 0; it is sufficient to show that ¢'(u) = 0 for all w.
We have that

¢'(u) = % (u+1)]1—o
= % (D(f(ge(u-‘rt)h)) _ (Df)(ge(u+t)h)) |t:0
= % (D(f(ge“heth)) _ (Df)(ge“heth)) lemo
= (D(Dif))(ge"") = (Du(Df))(ge"™) =0,

using that D o Dy, = Dy, o D since D is in the center.

Hence ¢(u) = 0 for all u € U. Moreover, note that e** € SO(n,R). Hence, we conclude that DF is invariant
under SO(n,R), so we are done. O

Next time, we will construct Casimir elements, which lie in the center of the universal enveloping algebra.
The construction will involve considering D;; := Dg,;, where E;; is a 1 at position 7, j and 0 elsewhere. This
construction for GL(2) will recover the Laplacian.
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7 Lecture 7 - 2/18/25

7.1 Casimir Operators on GL(n,R)

Last time, we talked about gl(n,R), the Lie algebra of GL(n,R), which is the space of all n x n matrices over
R with Lie bracket [, 8] = a8 — fa. Associated to gl(n,R) is its universal enveloping algebra U(gl(n,R)).
Concretely, U(gl(n,R)) is the algebra generated by differential operators

DoF(g) = QF(gem)

5 F(g + tga)

t=0 at t=0

for F': GL(n,R) — C.

We are interested in the center of the universal enveloping algebra ZU (gl(n,R)). In particular, we’d like to
explicitly construct elements of the universal enveloping algebra.

For 1 <1i,7 <n,let F;; be the n x n matrix with 1 at 4, j and 0 elsewhere.

Lemma 7.1. [E; j, Ey ji| = 6y jE; jo — 8, jyEy j, where §; ; is 1 if i = j and 0 otherwise.

The proof is simple and hence omitted.
For each i, j, define D; ; := Dg, ;.

Definition 7.2 (Casimir Differential Operator). For each 2 < m < n, a Casimir differential operator

is of the form
n n n
:E E E D, iy Disig - - - Dy iy -
i1=1is=1

=1
Theorem 7.3. For any Casimir differential operator, D € ZU (gl(n,R)).

Proof. We prove the theorem for m = 2. The theorem generalizes for higher m.
It suffices to show that for all 1 < r,s <mn,

Dy sD = DDy,
or equivalently [D,. s, D] = 0.
Lemma 7.4. For any D € U(gl(n,R)) and , 8 € gl(n,R),
[Do, DgD] = [Dy, Dg|D + Dg|D,, D].
Proof.
[Da, DsD] = DouDsD — DgDD,
= DoDsD — DgDoD — DgDDy + DgDoD
= [Da, Dg]D + Dg[D,, D).

O
Now, we have D is a Casimir differential operator. Then by applying the Lemma,
DrsaD Z Z Drsszl,ngZQ,il]
’Ll 112 1
n n
= Z Z [DhS? Di17i2]Di27i1 + Dihiz [Dhs’ Diz,il]
i1=1ip=1
n n
= Z Z (5i1,SDT,i2 - 5T,7;2-DZ'1,S) Dig,il + Dil,ig (5’i2,SDT,i1 - 5T,i1Di2,S)
i1=1i2=1
n n n n
= Z Dr.iy Diy s — Z Diy s Driy + Z Diy s Driy — Z Driy Diy s
=1 =1 i1=1 =1
=0.
O
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Now we try to compute the Casimir operator for GL(2).

a b

Lemma 7.5. Let g = (c d> € GL(2,R). Then

bc—ad ac+bd
g= <026d2 CQ{‘”) (mod O(2,R) - R*).
In the GL(2) case, we have that

D =D 1D11+ D12D21 + D31 D12+ D2 2Ds .
We can compute that

naro=82 (5 3¢5 96 DL -2 D86 D)

However, note that Dy ;D1 is not simply composing D;; twice, because D; ; may not be invariant under
O(n,R) (as it does not lie in the center). Thus we have to actually compute it explicitly.

9 0 y x\ (1+ts 0\ (1+t2 O
D1,1D1,1F(9)—%%F<(0 1)( 0 1)( 0 1

t1=0,t2=0
0 0 95 ((y(l +t1)(1+t2) x))
8751 Ot 0 1 t1=0,t2=0
0 5 0
=(y=— — | F(g).
(yay +y ay2> (9)
Similarly, we can compute that
0 z) (0 O
vkt =57 (5 1)+ (0 D)0 o).
0
95 ((y +tx x))
ot =0
a xt tj£§+z
t=0
= F (g
ya
where we transform via the Iwasawa decomposition, and
o 0 Yy T 1 0\ /1 ¢t
Dy1D1oF(9) = ——F
ko= (00 ()6 D)

9] 0?
=(—2y=— +9y*= ) F(g).
( yaery ax2> (9)
Similar computations can be done to find that

82
Dy 32D, 1 F(g) = wa(g)

and
D5 oDy 5F(g) = |y=— + 2—2 F(g)
2,202 26 (g yay Y PYe g).

Adding everything together gives —A, which thus lies in the center, as desired.
Finally, it is enough to consider these Casimir operators:

27



Austin Lei

Theorem 7.6 (Capelli, 1890). Let n > 2. Then ZU(gl(n,R)) consists of all polynomials in the Casimir
operators and Dy, ; it is a polynomial algebra of rank n in R. Moreover, Dy, annihilates all smooth functions
F : GL(n,R) — C invariant under the center.

In particular, note that if F' is invariant under the center, then

0

= 5. F(9)

ot =0

t=0

0
Dp,F(g) = aF(g +tgl,)

t=0

For GL(3), there are 2 Casimir operators, which one can find written out explicitly in Dorian’s book (Section
6.1).

7.2 Eigenfunctions of ZU(gl(n,R))

Remember that for an automorphic function, we want it to be an eigenfunction of all of the G L(n, R)-invariant
differential operators. Do these eigenfunctions even exist in general?
In the n = 2, we had that y® was an eigenfunction. Analogously, we will construct a power function.

Definition 7.7 (Power function on h™). The power function I(g, «), where g = xy € h™, is defined (formally)
to be

I(g, @) :==y*,
where a = (o, ..., o) € C" is a Langlands parameter (i.e. a3 + -+ a, =0.)
Y1 0
Y,
Supposing that y = ) , we define
0 Y,

n

y& = HYZD“

=1

Note that for this definition to be well-defined, we need that I(zy,«) = I(y,«) and I(gkz,a) = I(y, «), for
any upper triangular matrix g, k € K,, = O(n,R), and z € Z,, (the center). For invariance by the center to
hold, we need that >, a; = 0.

Definition 7.8 (Maass form for SL(n,Z)). A smooth function F : §™ — C is a Maass form if
e F(vg) = F(g) for all v € SL(n,Z) and g € h.
o |F(9) < |y1y2---Yn_1|"B for some B > 0, where g = xy.

e DF = A\pF for all D € ZU(gl(n,R)). In particular, the Ap should be the same as the eigenvalue for

I(g,a + p), where p = (p1,...,pn), with p; = "7“ — 4. In this case, we say that the Maass form has

Langlands parameters o.
The Ap is called the Harish-Chandra character.
Remark 7.9. p is half the sum of the positive roots in root system language.
Example 7.10. For SL(2,Z), a = (a9, —) € C? and p = (1, -1). Then
I(g,a+p) =yt
and

4

Selberg’s eigenvalue conjecture is precisely that ag € iR.

Al(g,a+p) = (1—a§> (g, + p).

We will show next time the power function is actually an eigenfunction of all the differential operators, and
then use the power functions to construct Eisenstein series (giving an example of an automorphic form).
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8 Lecture 8 - 2/20/25

8.1 Power function is an eigenfunction of ZU(gl(n,R))

Last time, we studied the ZU(gl(n,R)), and constructed the Casimir elements. We then constructed the
Y1 *
Ys
power function on h™; for g = ) and Langlands parameter « = (a1, ..., a,), we have

Y,
that

I(gaa) = ya = H}/;ai'
i=1

Proposition 8.1. DI(g,a) = Apl(g,) for all D € ZU(gl(n,R)), where A\p € C.

Proof. We again only prove for m = 2; the proof generalizes.
If w is a unipotent matrix, then I(ug, ) = I(g,«), as u only affects  within ¢ = zy. Hence it suffices to
consider the y component.
We have that 5

D, I(g,0) = —I(y+tyE;;, )

ot 0
In particular, note that
Y,
Y,

tyl; ; = ;
Y+ tyLu, Yi(1+1)

Yo,
o

0
Dyil(g ) = Y1 . (Vi1 + ) .. Y

Moreover, for any £th power, one can show that

= aiI(y? Oé)-
t=0

Di,i-[(g7 Ot) = Oéf[(g, Oé)-

Next, we consider D; ;I(g,c). If i < j, then position (i, j) occurs above the diagonal, so

A

0
D; jI(g,a) = —I(y +tyk; ;,a) B

ot

t=0 t=0

as the ¢ occurs above the diagonal, so it does not affect the y values (can be factored out with the unipotent
part x).
It will suffice to only consider i < j; see section 9.1 for more details.

O

Here we have a brief aside for Maass forms on SL(n, Z).
Let F be a Maass form for SL(n,Z). We have that DF = ApF, where Ap is the same as the eigenvalue of
DI(g,CY+,0) = )‘Dj(gaa+p)

Theorem 8.2 (Terras 1988, S. Miller). Let F' be a Maass form for SL(n,Z) with Langlands parameter
a=(ay,...,a,), and let A be the Laplacian (the Casimir operator with m = 2). Then

n®—n 1 <
AA = _,E 2,
AT T 2i:1al
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Example 8.3. Whenn =2, a = (8,—08). Then

which matches what we knew previously.

We know that the Maass form are countable (by spectral theory on a Hilbert space), and we can order them
by Aa. It is conjectured that for SL(n,Z), given a specific choice of Aa, there is only one Maass form (up to
constant multiple) with eigenvalue Aa.

8.2 Borel Eisenstein series

Let B C GL(n,R) be the subset the set of upper triangular matrices in GL(n,R). Let I' = SL(n,Z), and
I'p =T'N B(Z) (upper triangular matrices with elements in Z). Then we define the Borel Eisenstein series

Ep(g,):= > I(vg,a+p),
’YGFB\F

where p = (p1,...,pn), with p; = "T“ — 4. (The choice of p is to simplify the functional equation later.)

Proposition 8.4. For Re(w;) sufficiently large for all 1 < i < n —1, Eg(g,d) converges absolutely and
uniformly on compact subsets of h™.

Proof. Assume WLOG that all the «; are real. We know that a fundamental domain for I'\h™ is contained

in
1 V3
:{xy||x|<,y>}.

)
33 D) 2

[N

)

It is enough to show that for any gy € h™ and small compact subset Cy, containing go that

/ |E(g,0)]dg < 1.

Cg()

It is enough to prove that

[ X igaldg<

90 ’yEFB\F

Note that there exist only finitely many v € I'g\I" such that ygo € ¥ 5 ,. Hence there exists a very large
2

constant A such that vgg & EA,%~ Hence, we can bound the RHS by

1 1 A A
o [ ] veas
0 0o Jo 0

which is constant (uniformly in go), as desired. O

[N

8.3 Parabolic Subgroups of GL(n,R)

Consider any partition of n =ny + --- + n,, with 1 < n; < n. We define the parabolic subgroup
GL(’Ill) *
GL(ng)
P = Pnl,ng,...,nr =

GL(n,)
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We also have the unipotent subgroup

The P factors as a product of the unipotent subgroup and the Levi subgroup

GL(Th) 0
LP _ GL(TLQ)
GL(n,)
In particular, P = NPL?. Here we can think of the N7 as the  and L” as the y in the typical Iwasawa
decomposition g = xy.

Example 8.5. Note that the Borel subgroup corresponds the partitionn =1+1+4---+ 1.

Langlands was able to define Eisenstein series on parabolic subgroups. The idea will be to take in Maass
forms on each of the GL(n;) to induce the Eisenstein series.

8.4 Power Function on P, ,,

Consider any g € P, with

my
where each m; € GL(n;,R).

Definition 8.6. Let (s1,82,...,8,) € C", with Y_._, n;s; = 0. Then we define the power function |- |5 :
P — C such that

9l := T I det(my)|*.

=1

Example 8.7. Forn =2, g = <m1 m* ) for my,mg € R. Letting s = (s1, $2) for s1 + so = 0, we have
2
that

lglp, , = [mal™ - lma*.

Proposition 8.8 (Properties of the power function).
o |uglp = |g|p for any u € NP.
o |gk|% = |g|p for k with ki, ... k. along the diagonal, where k; € O(n;,R).

o Let z € Z(GL(n,R)). Then
9215 = l9l-

This is where the Z:Zl n;s; = 0 is used.

Next time we will construct Eisenstein series on the parabolic subgroups using these power functions.
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9 Lecture 9 - 2/25/25

9.1 Power function is an eigenfunction of ZU(gl(n,R))

Last time, we talked about the proof that the GL(n, R) power function is an eigenfunction of all the GL(n,R)
left-invariant differential operators, but the proof was incomplete. We complete the proof here.

Proof. Consider a Lie subgroup G C GL(n,R). Then we can construct a corresponding Lie algebra
Lie(G) = {a € M(n,R) | e** € GVu € R}.

There are two interesting subgroups coming from the Iwasawa decomposition. One of them is the Borel
subgroup B C GL(n,R) of upper triangular matrices. The corresponding Lie algebra b is all upper triangular
nxn matrices with coefficients in R. The other subgroup is K = O(n,R). This has corresponding Lie algebra
£ of skew-symmetric matrices; i.e. n X n matrices a such that o +a” = 0.
On GL(n,R), we have the Iwasawa decomposition GL(n,R) = B - K, so on the Lie algebras we have
decomposition

M(n,R) =gl(n,R) =bd¢L.

Proposition 9.1. Let D € U(gl(n,R)). Then there exists D* € U(b) such that the action of D on a Maass
form F : ™ — C is the same as the action of D* on F'.

Proof. Follows from the Iwasawa decomposition. Consider o € M, (R), decomposed into Iwasawa form
a = [+ k. Then

9 . B
DaF(g) = 5. F(ge")| = aF(gew) = DgF(g),
t=0 t=0

using that e® € K and that F is right invariant by K. This applies for all D,,, and hence for U(gl(n,R)). O

Thus, every D € ZU(gl(n,R)) can be expressed as the composition of Dg, with 5 € b; i.e. the 8 are upper
triangular matrices. Hence, we can write every D as a sum of compositions of D; ;, with 7 < j. In this case,
the computation D; ; did not involve any rotations by O(n,R), so the composition of the D, ; in this case is
well-defined (as a function on h™ as a coset, not on GL(n,R)/(O(n,R) x R*) as a quotient). Our previous
computations then show that the power function will be an eigenfunction, as desired. O

9.2 Langlands Eisenstein series for SL(n,Z)

Recall that given a partition n = ny + - - - 4+ n,., the associated parabolic subgroup is

GL(nq) *
GL(TLQ)
Pnl,...,n = . - GL(’H,,R)

GL(n.)
Given s = (s1,...,s,) € C" such that }_,_, n;s; =0, and

mi(g) *
ma(g)
9= . S Pnl,...,m-a
my(g)

with m;(g) € GL(n;,R), we define the power function

915, .. =TI det(mi)]*.
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Remark 9.2. In the case of the Borel subgroup n = 1+ 1+ --- 4+ 1, this agrees with the previous power
function.

For each GL(n;), let ¢; : b — C be a Maass form, invariant by SL(n;,Z). For GL(1), we make the
convention that ¢; = 1.

Definition 9.3. We have the induced Maass form
T
o(g) == [ [ 6i(mi(9))-
i=1

Remark 9.4. This will lead to the concept of parabolic induction.
I, *

Note that ®(ugkz) = ®(g) for all g € Py, .n,. u € NP = ] , ke K =

O(nl,]R)
O(n2,R)
’ ,and by z € Z.

O(n.,R)

Definition 9.5. Given parabolic subgroup P = Py, .. »n
FEisenstein series

and induced Maass form ®, we have the Langlands

-

Eps(g,s)i=  », ®(9)hyla"
ye(NP)\I'

where p(j) = n_znj —ng—nNg—--—Nj_1.

For today, we’ll just consider some examples.

Example 9.6. Let’s consider the case of the partition 2 =1+ 1. We have
o 5= (s1,52), with s1 + s2 = 0.
o p=1(1/2,-1/2).
e & =1.

o g = (; i) Using that the power function is invariant by K and Z, we can take g = (y T) .

Hence we get the Eisenstein series

s x
E’Pl,l(gas) = Z h/g|7;:fi = Z ”7 <y 1)
*
1

() §
~e L )\SEeD ve \SL(2,Z)

Example 9.7. Now consider 3 =2+ 1. We have

s1+1/2 1/

|(cz + d) + dcy[>s+

o 5= (s1,82), with 281 + s2 = 0.
e p=1(1/2,-1).
e Let ¢y : h%? — C be a SL(2,7Z) Maass form, and ¢ = 1. Then ® = ¢1.

ok %
e g=|x x x| = (ml(g) mj(g)) € P21, where my(g) € GL(2,R) and m2(g) € GL(1,R).
*
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Now
Ep,, a(9,5) = > ®(m1(v9)))vglps’s-

* ok ok
vye| SL3,Z)N| x % \SL(3,Z)
*

Example 9.8. For 4 =2+ 2, we have
o s =(s1,82) with 251 +2s3 =0
e p=(1,-1)
o Let ¢y :h2 — C and ¢ : h2 — C be SL(2,7Z) Maass forms.

* * %
° g= * : : = (ml(g) m:(g)> € P22, where my(g), ma(g) € GL(2,R).
* ok
Now
Ep, ,.5(g,8) = > ®1(m1(79))P2(ma2(v9)) 795" -
* %
*

ve | sL(4,z)n \SL(4,Z)

* X X X
L SR

Now, we will preview what we will talk about in the next few lectures.
For SL(2,Z) Eisenstein series, we have a Fourier expansion: for s = (s1, —s1), we have

*(2s1) 1 i
E — ,1/2+s1 C ( 1 1/2—s1 . —s1 / —m|m|y(u+1/u),,s1
Ple ) SV GG Y @ ) mZ#OUQ i, '

where
(*(s) = */°T(s/2)¢(s) = ¢*(1 — s)

is the completed Riemann zeta function.
The function as is has poles because of the zeta function. To complete it, consider

C*(Qsl + 1)E7)1,1 (gv 8);

This has functional equation s = (s, s2) — (82, 81).

du ;
D .627rzmx
u

The same thing happens with general Langlands functions as well — will need to multiply by the right thing
to get the functional equation. In the 4 = 2 4 2 case, the function needed to multiply is the Rankin-Selberg
convolution L(s,$1 ® ¢2); hence we can use this theory to get a functional equation for Rankin-Selberg

L-functions.

Remark 9.9. Is it possible to get something similar for Rankin-Selberg products of 8 or more Maass forms?
Not on SL(n,Z), but people are looking at Eisenstein series associated to other groups (loop groups?).
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10 Lecture 10 - 2/27/25

Last time, we talked about the Langlands Eisenstein series. This time, we want to compute the Fourier
coeflicients of the Eisenstein series.
There are two approaches:

e Explictily computing the Fourier coefficients via an integral. Generalized by Langlands to all SL(n, Z),
but fairly annoying.

e Use Hecke operators. This approaches generalizes to SL(n,Z) more easily.

We motivate these approaches by looking at SL(2,Z).

10.1 Fourier Expansion for SL(2,Z) Eisenstein Forms

Consider an automorphic form F' for SL(2,Z) (a term we haven’t defined, but for now think of a Maass
form or an Eisenstein series) with Langlands parameter oo = (a1, az). We previously described their Fourier
expansion

F(2) = agy' T + apy' > 43 " any/yKa, (27|n]y) e,
n#0

where

1 [ _y d
Kaly) = */0 6_5(“+1/“)ua%

is the Bessel function and the a; are constants in C. We normalize this function by letting a; = 1.
Recall from last time that we have the classical Eisenstein series

s+1/2
_ s+1/2 _ Yy
B = 3 (lmye)t 2= 3 (tm)
YE <1 *) \SL(2,Z) <a b) € (1 *> \SL(2,Z)
1 c d 1

We wish to compute the Fourier expansion. How do we do so? Langlands computed the Fourier expansion
by computing the integral

1 1 s+1/2
) —2minz = Y —2minx
¢(2s+ 1)/O Ep, ,(x+1y,s)e dz = /0 ¢(2s+1) ( %:1 e (cy)2)3+1/2€ dz
/ Z y8+1/2 6727rinz dz
0 ((cx + d)% + (cy)?)st1/2

(e.d)£(0,0)
s+1/2

s+1/2 Yy —2minx
=2¢(2s+ 1)y On o+/ Z (@t d? (e ))s+1/2e dx

where the first term corresponds to the ¢ = 0 term. To compute the second integral, we note that

9+1/2 9+1/2

—27rznrd _ / —27rinrcd
/Z (cz + d)2 + (cy)2)s+1/2 =) Z Z ca:+mc+r) T+ (cy)2)=1/2¢ v

c#0 m=—o0 r=1

1-m—r/c s+1/2

Z 025+1 Z Z Wefmrm(zfr/c) dz
el +9y?)

c#£0 m=—oor=1Y "M~ T/C

s+1/2

o0

1 ) oo y _

=2 “o9et1 6727727”/5/ —e*Qﬂznm dx
C:Zl 025-'1‘1 7; o (ZQ _|_ y2)s+1/2
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where we apply the transformation © — x —m — 1/¢, then

22 Z —2mir/c ys+1/2 e—27rinzy dx
= C2s+1 - y25+1(x2+1)s+1/2 y

1 .
_ Z 25 1/2— —on
= ¢ Sy ) ,/_oo (1'2 + 1)S+1/2 ¢ " dz

{24(28) 1/275\fr(:+81/2) n=0
= oo t1/2|p

where here we apply the transformation x — xy, and the last line is a known integral computation. Here

Ok (n) = Zd|n n

Hence we get that the Fourier expansion is

_ L(s)((29) 47TS+1/2 1/2 ;
E -9 s+1/2 9 1/2—s ﬁ K 92 27'rznm

10.2 Hecke Operators for SL(2,7Z)
For SL(2,Z), let F : SL(2,Z)\h?> — C be an automorphic form. For n = 1,2, ..., the Hecke operators are

defined by
1 az+b
nﬂ@:}jF( ).
\/ﬁ ad=n d
0<b<d
Theorem 10.1 (Hecke). T,,F(z) = a, F(z).
The L-function associated with F' is -
an
L(S7 f) = s
n=1 n

This has an Euler product

mor(-52)

p 1=1

where the a;(p) are the roots of a quadratic involving a,,.

Remark 10.2. The Hecke operators are I'-invariant, and adelically they act at the finite places (in compar-
ison to the differential operators, which act at the infinite place).

Now with the Hecke operators, we can define the concept of an automorphic form:

Definition 10.3. An automorphic form for SL(2,7Z) with Langlands parameters o = (a1, az) is a
smooth function F : h2 — C such that

o F(vz) = F(z) for all v € SL(2,7)

o F(2) < y® for z =z +iy and some B > 0 fized.
o AF = (7 — a%) F

o T,F —a,F.

To compute T}, on F(z,s), it is enough to compute T}, on the power function, since T}, is SL(2, Z)-invariant.
In particular, note that

T, (Im 2)*+1/2 = f Z ( az+b)s+1/2\1f Z (—y)SH/Q:nsa_zs(n)(Imz)S“/?,

ad=n ad=n
0<b<d 0<b<d
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and n®c_ss(n) appears in the expansion of the Eisenstein series.
Thus, in general, to compute the Fourier expansion for SL(n,Z) automorphic forms, we will need to extend
the theory of Hecke operators.

10.3 Hecke Operators in General
Let G be a group, acting on a topological space X. Let I' C G be a discrete subgroup.
Definition 10.4. An element g € G is a commensurator if (g~'Tg) NT is of finite index in g~'T'g and T.

We have the commensurator subgroup Cg(I') = {g€ G| (¢ 'T'g) NT finite index in g~'I'g and I'} .
Consider g € Cg(T') and letting d be the index of (¢~ 'T'g) N T in I', we have a right coset decomposition

I'= U ((97'Tg) NI)di,
with the §; € I'. Equivalently, this can be written as
gl = U4 Tgd;.
Definition 10.5 (Hecke Operator). Consider F € L?(T'\X) and a fized g € Cc(T). We define

d
TyF(z) := ZF(g&ix).
i=1

Note that the definition is independent of choice of §; because if §; and 6] are in the same coset, then
§; = g~ 1vgdF, or equivalently g§; = vgd; for some v € T', and F is T left-invariant.

Claim 10.6. T, : £2(I'\X) — L3(T'\ X).

The £2 condition is simple to check; this is really checking that
(TyF)(vz) = (TyF)(x)

for all v € T

Proof. We have by definition
d

F(ozx) = Z F(gdiyzx).
i=1
By the coset decomposition, we can write d;y = 0;0,(;), where 0 € Sy is a permutation of 1,...,d and
6, € (97'Tg) NT. Moreover, gd;y = g6;04(;) = 0} gd,(;) for some 6} € T'. Thus

d d
T,F(yx) = Z F(07 g051x) = Z F(g0si)x) = TyF (x).
i=1

i=1

We have a additive group of Hecke operators by taking the additive group generated by the Tj,.
Example 10.7. For I = SL(2,7Z), G = GL(2,R), X = b2, and F € L>(T'\h?). Note that the element

_ [non1 0
o= (" 0 e o)

Sn:{(g Z) |ad:n,0<b<d}.

noniy 0

0 o
that the elements of S,, can be used as the §; in our decomposition. This returns the original Hecke operator
we defined earlier.

with ng,ny € Z. Consider

By taking our Hecke operator to be the sum of T,, with g = > with determinant n, one can check
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Theorem 10.8. For SL(2,Z), Tyn = T Ty if (m,n) = 1.

To prove this in general, we need to find a way to muliply Hecke operators and express the answer as a sum
of Hecke operators; i.e. we want to extend our additive group of Hecke operators to a ring.
In particular, consider g, h € Cq(T"), with g’ = U;T'ey; and T'gl" = U;T'B;. We have

(FgF) (FhF) = (FgF) Uj Fﬁj = Ui’jI‘aiBj.

Then the product 7,7}, corresponds to summing over the o;0;.
Next time, we will prove that the Hecke operators in general are commutative, then talk about the GL(n)
Hecke operators.
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11 Lecture 11 - 3/4/25

11.1 Hermite and Smith Normal Form

We take a small aside to talk about Hermite and Smith normal forms for integer matrices, which we will use
in the discussion for Hecke operators.
Let A € GL(n,Z)". Then there exists v € SL(n,Z) such that

i C12 ... Clin
C2 SN Con

7A =
Cn

where the ¢; > 1 and the ¢; ¢ < ¢,. This is called the Hermite normal form. This exists because left
multiplication by SL(n,Z) corresponds to row operations on the matrix.
Similarly, there exists v,~" € SL(n,Z) such that

dn

YAy =
do

dy

with d; > 0, and dy | d2 | --- | dn. This is called the Smith normal form, which exists because now we
also have column operations on the matrix.

The uniqueness of these forms can be proven directly by comparing what SL(n,Z) matrix would be needed
to convert from one form to the other.

We introduce these forms to discuss Hecke operators for SL(n,Z).

11.2 Hecke operators in general

Consider a group G acting on topological space X, with discrete subgroup I'. We have the commensurator
subgroup
Ce(T)={g € G| (g 'T'g)NT has finite index in I" and g~ 'T'g} .

For any g € I', we have double coset decomposition
gl = UL Ta.

With this decomposition, we define the associated Hecke operator T, : £L2(T'\X) — £2(I'\X) by

In particular, we showed last time that Ty F(yx) = T,F(x).
Define an antiautomorphism on a group G to be a map * : G — G such that (x122)* = z3z7. In the case
of matrix groups, the matrix transpose is an antiautomorphism.

Lemma 11.1. If there exists * such that I'* = T and (T'gD")* = IgT’, then Ty, = T,T); i.e. the Hecke
operators commute.

The proof can be found in Dorian’s book.
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11.3 Hecke operators for SL(n,Z)

We now specialize to the case G = GL(n,R), I € SL(n,Z) and X = §h™ = GL(n,R)/(O(n,R) - R*).

By the previous discussion, the Hecke operators on SL(n,Z) commute. Moreover, it is easy to verify that the
Hecke operators commute with all of the left GL(n, R)-invariant differential operators. By functional analysis,
we can decompose £2(I'\h") into a basis of simultaneous eigenfunctions of all the differential operators and
Hecke operators. (There is a spectral theorem for unbounded operators, which will not talk about.)

Such a function will be called a Hecke form - a (smooth) Maass form that is simultaneous eigenfunctions
of the differential operators.

We now construct the Hecke operators for SL(n,Z). For any positive integer m, consider the set D,, of all

matrices of the form
momsy ... Mp—1

mommy
mo

of determinant m. We want to compute T,,, the Hecke operator corresponding to the union of all of
the matrices in D,,. In particular, this will mean looking at the «; in the double coset decomposition

Um’eDm Fm/F = UFO@

Let
¢t C12 ... Cin
Co . Con
S = ) . lci >1,0<c¢ie<cpcica...c, =det(m)
Cn
Claim 11.2.
¢ €12 ... Cln
C2 NN Ca.n
J Tm'T= U r
m/' €D, c;>1
0<c;,e<ce Cn

c1c2...cp=det(m)

The proof of this claim follows directly from the uniqueness of Hermite and Smith normal forms.
Hence we have the Hecke operator

1 C1,2 N Cl,n
Co . Can

T..F(g9) =) F g | =xFl9)
Cn

for F a Hecke form.

11.4 Hecke operators applied to Borel Eisenstein series

Consider the Borel subgroup B of upper triangular matrices (the parabolic subgroup corresponding to
n=141+4---+1) and b € B, with Y; the elements on the diagonal. We have the power function

n
bl = 1TY7™
i=1
where s = (s1, s2,...,8,) with s + -+ 4+ s, = 0. This function satsifies
|ubkz| = [b] 5,

where u is unipotent, k € K = O(n,R), and z € Z is in the center of GL(n,R).
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Then
_ s+p
Ep(g,s)= Y. hals”,
YETNB\T
where p; = ”TH — 1.
To compute T,,Eg(g, s), it is enough to compute Tm|g|SB+p. In particular,
s+p
¢ €12 ... Cin
C2 NN Con
s+p ’
Tnlglp™” = > N
c;>1 : :
0<c;,e<ce c
c1c2...cp=det(m) n B
C1 Yi---Yn-1
Z C2 Yi ...
(,'7‘,21
0<c;,¢<ce Cn
cic2...cp=det(m)
n
_ itpi
= E H(Ciyl e Yn—d)"TP
ci>1 i=1
O§c1,e<c£

c1c2...cp=det(m)

n
_ Si+pi s+p
= > 1« 9157
c;i>1 =1
0<c;,p<ce
cica...cp=det(m)

s+p

Yn—2

which is a divisor sum. We will show that this correspond to the Fourier coefficient of the mth term of the

Eisenstein series.

Next time, we will do this for Eisenstein series for an arbitrary parabolic. This time, the ¢; will be replaced

by Fourier coefficients of the Maass forms that are induced.
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12 Lecture 12 - 3/6/25

Up to now we’ve been focusing on Eisenstein series. Let’s switch back to Maass forms.

12.1 Maass Forms and Whittaker Functions for SL(n,Z)

Recall:

Definition 12.1. A SL(n,Z) (Hecke-)Maass form ¢ is a smooth function ¢ : ™ — C such that
e ¢(vg) = ¢(g) for ally €Ty, g €™
e D¢ =Ap¢ for all D € ZU(gl(n,R)), where Ap matches the eigenvalue of the power function.

o Tng = Ny for all Hecke operators

i Ci2 ... Cin
1 C2 e C2.n
TN¢ = n—1 E d) . . g
Nz o1 . :
0<c; e<ce Cn,

ci1c2...cn=N

¢ fl“n\hn ‘¢(9)|2dg < o0 (modemte grorwth)

Here we are defining a Maass form at the archimedean place. It is possible to lift this to a Maass form

adelically, but we will not talk about this in the class. (For the case of SL(n,Z), the lift gives nothing new.)
1 (2%

Consider the group U,(R) = ,and let M = (mq,ma,...,mu_1) € Z" 1. We have a

character 5 on U, (R), defined by

wM (u) — 62ﬂi(m1u1,2+m2u2,3+'~~+mn,1un,17n).

In particular, it is easy to check that ¥ns(un') = s (u)har(u').

1 up  UuUs
Example 12.2. Let n =3, M = (mq, m2), and u = 1 g |. Then ¥p(u) = 2milmiutmauz)
1

We want to use these characters to give the Fourier expansion of the Maass forms. However, since U, (R) is
not commutative, this is more difficult.
The analogue of a Fourier coefficient of ¢ in this case is

bt = [ oo [ oo,
where du = H1§i<j§n du; j. This will inherit properties of the Maass forms. In particular,
o drr(gkz) = dar(g) for all k € K,, = O(n,R), and z € Z.
o Ga1(vg) = Y (v)dn(9)
o Don(g) = Apou(g)

¢ an\fJ" ‘Q/Z;M(g)|2dg <0

How many functions satisfy all these properties? Shalika showed (Mulitplicity One theorem) that there is
only one up to constant multiple. The proof for SI(2,7Z) is simple, and there is a proof for SL(3,Z) in
Dorian’s book, but there is no known (at least to Dorian) simple proof for SL(n,Z).
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Remark 12.3. When working adelically, we need local Whittaker functions. Multiplicity one was proved for
them.

Jacquet constructed the function satsifying all of these properties. Recall we have the power function |g|*
(here s = (s1,...,8,) = @+ p, with > s; = 0). Recall that

2 snl

‘g|5 =1 Yn-1)""(Y1y2 ... Yn—2)° -

Jacquet constructed the Jacquet-Whittaker function

_/Z/Z g Prr () du

where du = H1<i<j<n du;; and w, = ) is the long element of the Weyl group. Here the

1
long element is needed for convergence, and this integral will converge for Re(s;) sufficiently large.
In particular, multiplicity one gives that ¢n(g) = eprWar(g). What is this constant? It will turn out to
essentially be the Hecke eigenvalue.

12.2 Applications

We have the Whittaker expansion (for even Maass form ¢)

= Y 3y A :mei/lz)WM«7 1>g>'

YEUR—1\'yy—1 m1=1 mp—1=1 k

(Here even means that ¢ is ¢(g) = ¢(dg), where

)

Then we can show that there exists an L-function

= i A(m,1...,1)m™°
m=1

with a functional equation, which will be similar to the Riemann zeta function (n Gamma factors instead of

).

This also has an Euler product

-1
[T(1 =A@ p e (<) AL 1) 7D (<))
P
1 U1 U3 mi1mso
Example 12.4. Letn =3, M = (m1,m2), and u = 1 wu |, M*= mo , g =2ay, and
1 1
-1
w3 = 1 (the definition is equivalent with —1 instead of 1 in the top right). Then the Whittaker

1
function is

o %) 00
g) _ / / / |wsug|se—27ri(m1u1+m2u2) dU1 dUQ.
—oc0 J—o0 J —c0
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Claim 12.5. Wy (g) = co,mW1,1)(M*g), where the constant only depends on s and M.

/ / / |w3uM*g|Sef2”(“1+“2) duq dug dus

> > > * s —2mi(myul +maoul) / /
mims |ws M*ugl|’e 1 2) duj dus, dus
— 00 — 00 — 00

Proof. We have that

Wi, (M*g)

o] o0 o0 X , ,
= myma / / / lws M* w3 |*|wsug|®e 27 muatmeuz) qy) dulb dus
—0J—0J—0
= CS,MW(ml,mz)(g)'
where u; = ufmy and uy = uymea. O
Remark 12.6. This proof holds in general for all n; the constant will depend only on n, s, and M.

Our next goal is to show that Tné(g) = A(N,1,...,1)¢(g). The Whittaker expansion gives that

| [ etgintman= S e ),

L

Applying Ty to ar(g) gives

¢ €12 ... Cin
—~ 1 1 C2 N C2.n
TN¢M(9)=/ / Z 0] . o | ug | Ya(u)du
0 0 ei>1 . .
0<c; e<ce Cn,

ci1c2...cn=N

—MKWKMMWMM~

using that T,,¢ = An .

1 Ci2 ... Cin
Co e Co.n ,
Let C* = ) . |- We can express C*u = u'C*, where
Cn

J
, 1 Z
ul] - — CiJguk,j.
¢
k=1

Making this change of variables gives that

C1

TN&EM (g) = Z H /* 1) o - g e 205 qo/ 7

>l 1<i<j<n? Wii=* c
0<c; e<ce n
ci1ca...cn=N

where the x is a pretty bad computation (that can be found in Dorian’s book). Working through it gives

c; N C1

1
! et et e
ool . g | ez Tis R Gy
. .

> I

ci>1 1<i<j<nV i,i=0
0<c;,¢<ce
ci1ca...cn=N
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Working through the mess gives

miCp M2Cp—1 mp—-1C2
)\NA(mh...,mn,l): E A( 3 geeey )

Cn—1 Cn—2 C1

ci1ca...cn=N
Cp—1|lmi,cn_2|ma,...c1|mn_1

Next time, we will use this relation to finish up the computation regarding Hecke operators.
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13 Lecture 13 - 3/11/25
13.1 Fourier Coefficients of SL(n,Z) Maass Forms

We briefly review what we discussed last time. Let F' be an (even) Maass form for I', = SL(n,Z) with
Langlands parameters a = (ayq, ..., ay). Then we have a Fourier expansion

Fo= Yy 3 A (v (T Jpamna),

n—
VEUn_\Tp_1mi=1  mn_1=1 [[ 2y m,

where W is the Jacquet-Whittaker function
Wig.a)= [ o[ jug i du

and
mimsg...Mp—-1

Mp—1

(Note that this matrix is opposite to Dorian’s book, because in Dorian’s book the elements above the diagonal
are reversed in order.)
Last time, applying the Hecke operator Tl to this expansion gave the identity

miCp M2Cp—1 Mp—-1C2
)\NA(mh...,mn_l): E A( 5 g eeey )

Cp—1 Cn—2 &1

ci1ca...cn=N
Cn—1|m1,cn_2|ma,...c1|mn_1

(More details can be found in Dorian’s book.)

Proposition 13.1. If A(1,...,1) =0, then A(mq,...,mp_1) =0 for all m;. If A(1,...,1) # 0, normalize
it to be 1. Then Axy = A(N,1,...,1). In particular, this gives the identity

miCp M2Cq Mp—-1Cn—2

AN 1,...,1)A(ma, ..., mp_1) = ZN A( , >

T C1 C2 Cn—1
Cl...Cp=
c1lma,..,Cn_1|mn_1
Proof. More details for this proof can be found in Dorian’s book. First, one needs to prove a multiplicativity
relation for relatively prime coefficients; see Dorian’s paper.
By setting all of the m; = 1, one can show that A(1,...,1) = 0 implies that A(N,1,...,1) =0 for all N.

Next, set N =my =pand me =--- =m,_1 = 1. Then
»?
0=MNA(p,1,...,1) = Al = 1,...,1
D (paa a) Z; (C%vclva 7)7
c1Cn=p

so we conclude that A(1,p,1,...,1) =0.

One can inductively take higher powers of p and later positions of A(1,...,1,p,1...,1) (and apply the
multiplicativity relation) prove the relation.

Now, suppose A(1,...,1) = 1. Setting m; = 1 in the previous relation gives the final equation. O

13.2 L-functions of SL(n,Z) Maass forms

To a Maass form F, we associate the L-function

mS

L(s, F) ZZM

We can show that this L-function satsifies an Euler product.
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Proposition 13.2. Define

Then L-function has an Euler product

where

—1
bp(s) = (1= Alp, 1o, Dp ™"+ AL, L D2 o (<1 AL Lp)p™ (0% 4 (1))
Proof. For positive integer k, we have the relation
AR, 1, DAL, 1) = AR L D)+ AR, )

Similarly, . . -
A(p®,1,.. ., DAL p,..., 1) = AP ,p,..., ) + AP, L,p,..., 1)+ ...

One can repeat this for all positions of the p. Adding them all up with alternative signs and multiplying by
the right power of p~° gives the desired result. More details can be found in Dorian’s book. O

Example 13.3. In the SL(3,7Z) case, we have the L-function

L(s,F) =" A(:Zs’ D (1= Al 1 + AL = p5)

We note that we have a bound on the Fourier coefficients.

Proposition 13.4.

A(m1 mo, ..., _1)
;1_17 k(:Lz—k-)n = 004(1)
k=1 "%

Proof. By the Fourier expansion, we have that

! ! _ Almy, ..., Mp_1
[ [ o an= Ay,
0 0 [Imy

where
_ 627Ti(m1u1,2+'"+mn—1un71,n)

1/)(m1,...,mn,1) (U)

Then since the Maass form and Whittaker function are bounded and only depend on «, we are done. O

Hence L(s, F') converges for Re(s) sufficiently large.
We also have the functional equation for L-function associated to a Maass form. We won’t prove it, but we
state it. To do so, we need to define the dual Maass form.

Definition 13.5. Let F be a Maass form for SL(n,Z) with Langlands parameter « = (aq,...,a,) € C",
where a1 + -+ - + ap, = 0. The dual Maass form F is defined to be

F(g) = F(w(g™")"w™)
where w is the long element of the Weyl group of SL(n,Z)
(—1)ln/2]
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Remark 13.6. Because F is SL(n,Z)-invariant on the left and O(n,R)-invariant on the right, we can
equivalently define _

F(g)=F((g")").
However, w(g~Y)Tw="! puts the matriz (g=)T into a useful Iwasawa form.
What are the Langlands parameters of F? Considering any D € ®™, we know that DF needs to have
the same eigenvalue as |w(g~")Tw™1|**P. We note that comparing w(g~")Tw™! to g, the only difference
is that the diagonal elements have been reversed. This corresponds to F' having Langlands parameters
(—Qny...,—aq).
We can now define the functional equation (for even Maass forms).

Proposition 13.7 (Functional equation). If F' is an even SL(n,Z) Maass form with Langlands parameters
(a1,...,n), then the completed L-function
aﬂ') L(s, F)

L*(s,F)=n 3 [T (s
j=1
L*(s,F)=L*(1—s,F).

satsifies the functional equation

Remark 13.8. The functional equation is much more difficult for congruent subgroups; you get ramification,
and the Langlands parameters do not determine everything.

13.3 Bump Double Dirichlet series for SL(3,Z)
For a SL(3,Z) Maass form F', we can define a special double Dirichlet series first defined by Bump:

>y Amens

mi= 1mz 1

Proposition 13.9.

ml,mg _L(sl,F)L(SQ,f')
Z Z C(s1+s2)

mi= 1mz 1

Remark 13.10. Nothing like this exists for GL(4) — this is special for GL(3).

Proof. We have
Amy, DA(Lmg) = Y A(ma/d,my/d).

d|ged(my,m32)
Then

L(s1,F)L(sy, F) = Z Z ml, 1 mz)

mi= 1m2 1

Z Z p Ty Y. Almi/d;ms/d)

mi1=1ma= 1 2 d|ged(my,mz2)

Z >y mdsl D e A me)

=1mj(=1 d

oo oo

A(m1 mg)
=C(s1+92) >, Y o "
mi=1m,=1 1 2

where m; = m)d and mg = mbd. O
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Remark 13.11. There is no good unified theory of multiple Dirichlet series with L-functions over several
complex variables. Note that this isn’t really a two-variable L-function - just a product of two GL(2) L-
functions.
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14 Lecture 14 - 3/13/25

14.1 Selberg Spectral Decomposition for SL(2,Z)
Consider £2(T'\h?), where I' = SL(2,Z). The Selberg spectral decomposition states that
L£3(T'\h?) = C @ cusp forms @ Eisenstein series,

where the cusp forms are called the discrete spectrum and are countable, and the Eisenstein series are
called the continuous spectrum and are uncountable.
We make this decomposition more explicit.

Theorem 14.1 (Selberg spectral decomposition for SL(2,Z)). Consider smooth F € L>(I'\h?). Let n;(g)
for 3 =0,1,3... be an orthonormal basis of Maass forms, orthonormal with respect to the Petersson inner

product, and no(g) = \/g Then

Flo) =S Fmm(a)+ g [ (R B9 Bl 9)ds.
]:0 —100
Remark 14.2. Here we use the classical definition of the Fisenstein series

E(g,s) = E(z,s),

of the form

s — 2 ) — T
Blg,s) = y* + 6(s)y'— + c*é;> S o1 a2 K o (2l
n#0

where C*(s) = n75/?T(s/2)((s) = ¢*(1 — s) is the completed Riemann zeta function and
¢2s—1)
¢*(2s)
This will have poles (at least heuristically by RH) at Re(s) = %; hence we choose the contour integral to be
the right of Re(s) = 1

Z.
We also recall that we have the functional equation

E(g,s) = ¢(s)E(g,1 = s)

¢(s) =

and
o(s)6(1 — ) = 1.
The proof will use the Mellin transform:

Definition 14.3. Given H : R — C (satsifying some convergence conditions, for example for H Schwartz),
the Mellin transform is

H(s) = /O h H(u)us%

and inverse Mellin transform is

1 c+ioo~ .
Hw) =5 [ A ds,

where ¢ is chosen large enough such that I:j(s) has no poles to the right.

Proof of Selberg Spectral Decomposition. The proof will follow in two steps. Let
F(g) = Ap(y)e*™*
neZ

be the Fourier decomposition of F', and suppose that F' is orthogonal to the constant function. We will
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1. Show that (F, E(x,5)) = Ag(s — 1).
2. Show that
1 1/24ic0
Fo) - g [ R EG) Bl
1

AT J1 72— ico
has constant term O.

Step 1 Proof: We have that

_ T 1 s | dzdy
wrem= [ F((5 1) (5 T o)
I'\b YEL o\

1
_1 / F(e)(Im 2)* 2
QWGFOOF ~7(T'\H2) Y

=

i dzd
/ F(2)y* — Y
0 Yy

Ao(y)y* 2 dady

— >

= ANO(S - 1)v

where in the third line we move to an integral over the space I'oo\I', and the factor of 1/2 disappears because
—1I € SL(2,7Z) fixes h2.
Step 2 Proof: Recall that the functional equation of E(z, s) gives

E(z,8) = ¢(s)E(z,1 — s).

Hence, we know that

Ao(s — 1) = (F, E(x,5)) = (F,0(5)E(x,1 = 5)) = ¢(s) Ao(—s),

and so . .
Ao(=s) = ¢(1 —5)Ao(s — 1).
Taking the inverse Mellin transform gives
1 1/2+’LOO .
Ao(y) = By Ag(s — 1y'~*dy
T J1/2—ico
and applying the above identity gives
1 1/2+i00 __ )
Ao(y) = 7/ Ao(=s)o(s)y *dy.
270 S j2—ioo
We also can apply the transformation 1 — s — s to the original inverse Mellin transform to get
1 1/24i00 .
Ao(y) = 5= Ao(—s)y® dy
2mi Jy /2—ioco
Adding the two equations together gives

Ao(y) Ao(=s)(y® + o(s)y'*) dy.

- Tm 1/2—i00
For Re(s) = 1/2, note that Ag(—s) = Ag(5 — 1), and by the first step we know that

Ag(=5) = Ag(5—1) = (F, E(x,5)).
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Thus we get that

Ao(y) (F,E(*,9)) (y° + ¢(s)y'*) dy,

1—s

4mi 1/2—ic0

where we note that y* + ¢(s)y is precisely the constant term of F(g,s). Since the other parts of the
expansion will contribute to the nonconstant terms in the Fourier expansion, we conclude that

F( (F,E(x,8)) E(g,s)ds

4 1/2—ic0

has constant term 0, as desired. O]

14.2 Selberg Spectral Decomposition for SL(n,Z)

How do we generalize the decomposition to SL(n,Z)?
Recall that we have the parabolic subgroups

GL(nl) *
GL(’I’LQ)
,Pnl,..‘,nr =
GL(n,)

corresponding to partitions of n =ny + - -+ + n,. We also defined the power function

l9* = T I det(m)
i=1

mq *

for g € ) € Pn,....n,, where s = (s1,...,8,) € C", with > n;s; = 0. We also defined

.....

an induced Maass form

®(g) = H ®i(mi),
i=1

where each ¢; € £2(T,,\h").
With these, we defined the Langlands Eisenstein series

Ep,, .95 = > O(vg)|ygl**.

Langlands and Arthur showed a corresponding spectral decomposition for £2(SL(n,Z)\h"):

Theorem 14.4 (Langlands-Arthur). Let ¢1,¢a,... be an orthonormal basis for cusp forms for SL(n,Z).
Let F € L2(SL(n,Z)\h™) be such that F is orthogonal to the residual spectrum (residues of Eisenstein series
in the s variable). Then

oo

Fo)=) (Fépeilo+ > > //HSWWFO (F, Ep.a(x,9)) Epalg,s)ds,
P=Pny....on, @

j=1 Re(s3)=0
where ds = [],_, ds,.

Remark 14.5. In SL(2,Z), E(z,s) = y* + ¢(s)y*~* + ... has a pole at s = 1, with constant residue (as
yY = 1). Hence the residual spectrum in the SL(2,7) case are precisely the constant functions.

Example 14.6. For SL(4,Z), let ® = (¢1,¢1), two GL(2) cuspforms. We will also have a function ¢(s)
with is a ratio of L(s,¢1 X ¢1). This will give the first interesting example of a residual spectrum.
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14.3 Kuznetsov Trace Formula

For the next week, we will talk about the Kuznetsov Trace formula. We want to construct an automorphic
form that is not an Eisenstein series, and apply the spectral expansion to it. In particular, the automorphic
forms we wish to define are the Poincare series.

Definition 14.7 (Poincare Series). For any M = (my,...,m,_1) € Z" ', we have the Poincare series
PM(g,s)= > |gl"Tu(rg),
YeU NIy

where Ty, = SL(n,Z), U, is the group of unipotent matrices, and

\I]M(g) _ \I’M(Z‘) — 62771'(7”‘1£1,2+m2$2.3+'"+mn71xn—l,n)

where g = xy is the Iwasawa decomposition.
Remark 14.8. If M = (0,...,0), we recover the Fisenstein series.
Remark 14.9. This can be generalized to any parabolic subgroup.

Note that for any SL(n,Z) Maass form ¢ and any M = (mq,...,mpy_1),

6P g = [ o)) X el U (90

Fn\hn 'YeUn\Fn

= /:0 . ../joo /01 . ../01 ¢(g)¢(m71,m71)(z)|y|s+pd*g,

where d*g is the GL(n, R)-invariant measure. Note that if M = (m,1,...,1) (and ¢ a Hecke-Maass form),
this integral is precisely A(m, 1,...,1) times the Mellin transform of a Whittaker function — note that this
is the same as what happens with M = (0,...,0) (i.e. when the Poincare series is the Eisenstein series).

Remark 14.10. The Mellin transform of a Whittaker function is understood for SL(2,Z) and SL(3,Z),
but not well understood for n > 4. In these cases, we can include a test function in PM(g,3) to get better
information about the integral of the Whittaker function.

One application of the Kuznetsov trace formula is to get information about the average value of the jth
coefficient of a Maass form. We will talk about this application in the future.

Remark 14.11. In the spectral expansion generally, the most difficult terms to compute are the continuous
spectrum, which will typically affect the error terms. Next time, we’ll talk about some applications, which
give better results than considering this from the representation theoretic perspective, because we tackle the
continuous spectrum directly.
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15 Lecture 15 - 3/25/25

15.1 Functional Equation of the Maximal Parabolic Langlands Eisenstein Series

Recall that we have the parabolic subgroup

GL(’I’Ll) *
GL(RQ)
Pnl,.“,nr =
GL(n,)
with Langlands decomposition
Inl * mq
Inz ma
g =
L, my
For s = (s1,...,8,) with > n;s; = 0, we have the power function

Si

I
91, .. = [T det(mi(9))
i=1
and Langlands Eisenstein series

-EPn1 ,,,,, e (g,S) = Z |,yg|s+p’
YE(Pay,...,n.NSL(n,2))\SL(n,Z)
where p; = "5 —ngp — - —n;q.
Our goal is to completely understand the Eisenstein series; i.e. we want to get their Fourier coefficients and
the functional equation.
There is one case where we can get everything via Poisson summation - the case of the maximal parabolic
subgroup of SL(n,Z) (the maximal compact subgroup, also known as the mirabolic subgroup):

Poya = <GL(n— 1) *> .

1
In this case, we have s = 51 + s with (n — 1)s1 + so = 0, with p = (3, —251). Hence
EPn—1,1(gvs) = Z (det,yg)81+l/2.

YE(Pr—1,1NCyn)\T'n

Theorem 15.1. Ep,_, ,(g,5) has meromorphic continuation to all of s; € C, with simple poles at s; = £1/2.
In particular, we also have the completed Fisenstein series

L (gs) = nm M2y <”<31 +1/2)

EPnfl,l 2 ) C(n(sl + 1/2))EP71,71,1 (gv S)

with functional equation
Ep, (9, (s1,82) = Ep,_, (9717, (=51, —s2))-
Proof. We can prove this functional equation using Poisson summation: for a smooth function f : R" — C

and g € GL(n,R), .
> flmg) = > Flm(g™)7),

e | det g| et
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where

~

oo (oo} i
F(@1,... 20) = / / F((tr,- . tn))e 2milhimetttazn) g dy,, |
—o0 —o0

For v, € (P,—1,1NT,)\I's, we note that for py =+ with p € P,_1 1, this occurs iff the last rows of 4" and
~ share the same greatest common factor. Thus we can write

1 i Yi---Yn—1

— * . ". _ *
9= a1 ... Gy - . m AN

What do the elements in the last row look like? We can compute that

b1 =a1y1 .- -Yn—-1

by = (@112 + Q2)Y1 - - - Yn—1

b, = a1T1,n + 272 n +-rtan-1Tn—1n+an

We can now rewrite the Eisenstein series in terms of these new coefficients, which will give an Epstein zeta
function.
However, this previous formulation for - g is not in Iwasawa form, and must be converted to get the formula
for the Eisenstein series. Let - g = 7k(rl,), where 7 is the Iwasawa form for v - g (i.e. k € O(n,R) and
r € R). We want to compute

det(vy - g)°® = (det 7)°.

)T = 72777, This implies that

Note that vg(vg
b?+~~+bi:7”2

by examining the bottom right element on both sides.

Thus det
det(y-g) =detT = dZtZr_" = det(g)(b? + -+ b2)""/2,
SO we can write
Ep, 1.(0,5) = (detg) /2 3" (344 02) T
(a1,...,an)#0
(a1,...,an)=1

Multiplying by ¢ (M) removes the relatively prime condition. Hence

(M) Er s = X i) R

2
(a1,...,an)#0
Now we apply Poisson summation to get the meromorphic continuation. Let
ful(z1, . xn)) = G
Then

n(e141/2) du

B, (o) = a2 [T Y ) = 00 | a2

u

where one can now finish as in the functional equation of the Riemann zeta function (by splitting the integral
into the integral from 0 to 1 and the integral from 1 to infinity). The poles arise from the f,((0,...,0))
term. O

Remark 15.2. The Langlands functional equation is

E}n,l,l(% (51, 82)) = E*l,n,l(gv (52, 81))~

It turns out be equivalent to the functional equation we have above.
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15.2 Rankin-Selberg for GL(n) x GL(n)

Let ¢1,¢2 be (even, for simplicity) Maass forms for SL(n,Z), with Hecke coefficients Ay, (n) and Ay, (n),
and corresponding L-functions
Ap, (n
L(w7¢1) _ Z ¢1( )

nw
n

L(w, ¢2) _ Z A¢2 (n)

nw

and

n

Definition 15.3. The Rankin-Selberg L-function is defined to be

oo oo

Ap,(may oo ymp_1)Ap, (M, . My
Dw,grx )= Y o 3 Aol da 1>

n w
(my ™ my™ " .. mp_1)

mi=1 mp=1
which converges absolutely for Re(w) sufficiently large.

One can can use the Euler products of the Maass forms to get the Euler product of the Rankin-Selberg
L-function.

Proposition 15.4. If ¢1 and ¢o have Euler products

w (bl HH 1_ap,zp w -t

p =1

and

w ¢2 HH /szp v 717

p =1
respectively, then the Euler product for the Rankin-Selberg L-function is

L(w,¢1 x ¢2) = [[ [T 1101 = awiBpip™) "
p i=1j=1
Proof. See Dorian’s book — don’t think it was covered in class. O

Remark 15.5. When you work adelically, you don’t see the L-function coefficients - you only see the Euler
product. Hence if you want to work with Fuler products, its better to work adelically.

Dorian never stated this is what we trying to prove in class, but we have the functional equation of the
Rankin-Selberg L-function.

Proposition 15.6. If ¢1,¢2 are of Langlands parameters (ai,...,a,) and (B1,...,0n), respectively, with
completed L functions

L*(w,¢1) =7 % HF (w ; ai) L(w, ¢1)

and

L*(wa¢2) =7 k2 HF (U};Bz> L(wa¢2)a
i=1

then L(w, ¢1 X ¢2) has meromorphic continuation to all w € C, with at most a simple pole at s = 1 with
residue proportional to (¢1,¢2), and we have the completed Rankin-Selberg L-function

L™ (w, p1 X ¢2) = < ﬂj) L(w, 1 % ¢2)

i=17=1

with functional equation

L*(wa¢1 X ¢2) = L*(l _waa X %)
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Proof. To compute the functional equation of the L-function, like the classical GL(2) case, we will want to
use the inner product

{(¢1,02Ep,_,1(9,5)) Z/F . ¢1(9)92(9)Ep,_, 1(g9,5)dg.

Remark 15.7. Note that this matches exactly what we expect for GL(2) (the FEisenstein series is just the
standard GL(2) Fisenstein series).

We need to apply unfolding, but here we will need to unfold twice (once for the Eisenstein series, and once
for the Fourier expansion of GL(n) Maass forms). First, unfolding the Eisenstein series definition gives

/ 61(9)ba(g)lgl 22 dg .
P—n,_l‘l\b" Y

Now, we can write

/ . .
SUDI I
1 Tn—1

Thus we can take the union
U (7 1) (Pr—1,1\b") = Un(Z)\b".
~YEU,—1(Z)\SL(n—1,Z)
The left union appears in the Fourier expansion of Maass forms. Working this out gives

Aga(m, .

(01.0:Bp 00 (05) = 3 #1(0) =ty gl dg.

(m1:~~-7mn71) Un(Z)\hn *

The Whittaker function contains an exponential function, and hence picks off the corresponding coefficient
in ¢1. This gives

- — A¢ (mla"'amnfl)A¢ (mlv"'amnfl) o i = s14+1/2 %
IR : R s /0 /0 Wa(My)Ws(My)(det y)* +/2d*y,
mi=1 Mp—1=1 k=1 """k

mi...Mp—-1

where « and 3 are the Langlands parameters for ¢1 and ¢o, respectively, and M =
mi

1
By a change of a variables, this becomes a product of the Rankin-Selberg L-function and the Mellin transform
of a product of Whittaker functions, which by a result of Eric Stade is a product of Gamma factors, and this
result, along with the meromorphic continuation/functional equation of Ep,_, (g, s), gives the functional
equation as desired. For more details, see Dorian’s book (section 12.1). O
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16 Lecture 16 - 3/27/25
16.1 Normalized Whittaker Function

Today we write down the best definition of a Whittaker function.

Definition 16.1. Let o = (v, ..., ay) be a Langlands parameter. Then we define the normalized Whit-
taker function

F(l-i—aj—ak)

2 .

Walg)= ][] W/ lwauglf o1 1 (u) du,
1<j<k<n T 2 Un (R

where du = [[,<;_j<, duij, By is the Borel subgroup, and
Wy =

be the long element of the Weyl group.

Remark 16.2. We can replace the Jacquet-Whittaker functions in the previous Fourier expansion for the
Maass forms with these normalize ones; hence the Fourier coefficients will differ by the product of the T’
factors and the ms. This doesn’t affect any theorems, as this product is a constant independent of which
coefficient is chosen. This choice, however, will affect the value of the ”first coefficient” because of different
normalizations.

We will make this change from now on; i.e. all our Fourier coefficients will divided by the product of these
Gammas and multiplied by the ws from what we had before.

Let 0 € S, be a permutation, and let o(a) = (g @))iz;-

Proposition 16.3. The functional equation of the Whittaker function is

Wo(a)(9) = Wal(g)-

Sketch. The power function only depends on the diagonal elements. A permutation of the « hence corre-
sponds to permuting the diagonal elements. One can also express this as a conjugation by an element of the
Weyl group; it suffices to prove the functional equation for permutations that correspond to a swap of two
adjacent elements, which will reduce to essentially the GL(2) case. For more details, the proof can be found
in Dorian’s book (although written in spectral rather than Langlands function). O

Remark 16.4. The generic representations are very important, and by definition have Whittaker functions
(at the archimedean place, which corresponds). The choice of the T' factors are necessary to show that the
Whittaker function never vanishes for all choices of Langlands parameters, which is needed for the generic
representations.

16.2 First Coefficient of Langlands Eisenstein series

Our goal is to compute the first coefficient for every Langlands Eisenstein series. To do so, we’ll need to
compute the first coefficient for any Maass forms, as Langlands Eisenstein series are induced by Maass forms.
Last time, we talked about the Mellin transform of the product of two Whittaker functions.

Theorem 16.5 (Stade). For s € C,
TT I, T (22

/ / Wa(y)Ws(y) det(y)® dy = e
0 0 27— =2 T (%)
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Y1..-Yn—1
where y is the usual diagonal matrix and dy = 2;11 yk(f,%. Here note that
hn k

(dety)* = TT7=) of" "

Recall last time, we considered s = (s1,s2) with (n — 1)s; + s3 = 0, and we showed that

C(’I’L(Sl + 1/2)) <¢1a ¢2EP"71,1(*7§)>

oo

= i Z A¢1(m17n';"mnfl)Aaﬁz(mlv'-'amnfl) <W

1, n—2 ; Qg
(MY~ my ™% o)1 T1/2 !

s1+1/2
7Wa¢2 det(') Y >

m1:1 mn_lzl

=g, (L D) A, (1 D L(s1 +1/2,61 % 62) (W, W, det()7 /)
where the second inner product is given to us by the result of Stade. Note that implicitely we assume
normalized coefficients to get the L-function, which explains the Ay, (1,...,1)A4,(1,...,1) term. We can
now use this to get information about the first coefficient of a Maass form:

Theorem 16.6. Let ¢ be a Maass form for SL(n,Z) with Langlands parameter a = (o, ..., ay). Then for
some constant ¢, depending only on n,

2 Cn <¢a ¢>
|[Ag(1,...,1) _7L*(1,Ad )’
where ( 3
L(w,¢ X ¢
Ad ¢) = ————=
and

rwade)=| ] F(H%_O‘k> L(1, Ad )

) 2
1<j#k<n

Proof. Ep,_, 1(g,s) has poles at s = £1/2. Suppose R = Res,—1/2 Ep,_, ,(g,s) (one can show that this
residue does not depend on g). Then

_ QRess:1/2 E(gas) d
O Ol 2

On the other hand, using the inner product computation from before to the RHS and taking the residue at
s1=1/2 gives B
|A¢(13v1)|2 L(51—|—1/2,¢)X¢)
——— " Resg 12
R ((n(s1+1/2))

Applying Stade’s formula finishes the proof. O

<STADE>) .

Remark 16.7. If we normalize ¢ such that (¢, d) = 1, we get a simpler formula — we’ll make this assumption
later.

Remark 16.8. The functional equation adelically only depends on the Langlands parameters at co. Then
the minimal parabolic Eisenstein series can be used to determine the functional equation for any Maass form
— the Gamma factors are exactly the same. The only thing that changes is the pth coefficient. This can be
done on any Chevellay group. Dorian calls this the template method — for more details, see |this paper of

Goldfeld, Miller, and Woodbury.

We will use the template method to get the first coefficient of every parabolic Eisenstein series. We’ll use
the Borel Eisenstein series as the template. One can do this instead with the Bruhat decomposition and
Kloosterman sums, but that requires a tedious computation.
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16.3 First Coefficient of Borel Eisenstein Series

Let s = (s1,--.,8n), and recall that we have the Borel (minimal parabolic) Eisenstein series
Bp,(g,8)= > |ygl"tren.
’Ye(Bann)\Fn

One can show that we have the first coefficient (due to Selberg)

Ay (L. 1),8)=cn J] ¢O+s—s0)7"

1<j<k<n

A (adelic) proof can be found in [this paper of Goldfeld, Miller, and Woodbury. This formula will be the
template for other first coefficients of Eisenstein series. To do so, however, we need to know the Langlands
parameters of the most general Langlands Eisenstein series.

Let P,,, ., be a parabolic subgroup, (s1,...,8,) =s € C", and ® = ¢1 ® --- ® ¢,, where each ¢; is an
SL(n;,Z) Maass form. Then

Ep,, ..0(g.8) = > ®(v9)lglm”
VE(Pay o ATW\D,

Assume that (¢;, ¢;) = 1 for all ¢, and suppose each ¢, has Langlands parameter al) = (Qj1yeees Q).

Proposition 16.9. The Langlands parameters aps(s) of Ep, . o are
(al,l + S1yv+, Q1ny + S1,Q21 + 82y ..., A2y + 82, ..., Q1 + Spyevey Qp g + 87‘)

Proof. We need to prove that
Ep,  ..o(x3)

has the same eigenvalue of all GL(n,R) invariant differential operators as

B ape(s)ters,
B, :

One can in fact show that
| SHPPry, np | |(1P,<I’(S)+an
- BTI,

by checking diagonal elements.
Taking care of the Maass forms requires a brute force computation.

O

Remark 16.10. How does the template method work? Assume that we have an induced Maass form ®.
The first thing to do with is to replace ® with a Borel Fisenstein series with the same Langlands parameter.
Once this is done, the new object will be a minimal parabolic Eisenstein series for some choice of Langlands
parameters. Computing these will allow us to compute its first coefficient, up to some normalization factor.
What is this factor? Since we normalized by {(¢;, ¢;) = 1, we will need to multiply by some factor corre-
sponding to the adjoint L-function. Hence the first coefficient will correspond to a product of completed
functions and adjoint L-functions.

Next time, we will perform this technique in detail.
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17 Lecture 17 - 4/1/25

17.1 Template Method for First Fourier Coefficients of Eisenstein Series

Last time we discussed the template method, which serves as a simple algorithm for computing the first
coeflicient of Langlands Eisenstein series. We describe it in more detail today.

Recall that given a parabolic subgroup P, . ., s = (s1,...,8,) € C" with > s;7, =0, and ® = )1 Q- - -Q¢y,
with each ¢; an SL(n;,Z) Maass form, we have the Langlands Eisenstein series

Epa(g,s)= Y, ®(vg)hals™-
(CnNP)\I'y
1 Ui
1
Take M = (my,...,mp_1) € Z" 1. We have the character v, (u) on u = . € U,(R) of the
1

form
¢M (U) — eQﬂ'i(mlu1,2+"~+mn,71un,1,n)_

We can extract the mth coefficient via the integral

1 1
/ . / Eps(ug,s)Yym(u)du = Ap s (M, s) - Whittaker function.
0 0

Here the Ap (M, s) is the mth coefficient. It splits into the form
AP,<I>(M7 S) = A}{q;.((l, ey 1), S)AP,<I>(M7 S),
where Aps (M, s) is the Hecke eigenvalue, and Aps((1,...,1),s) is the first coefficient.

Remark 17.1. We only have a nice formula for the eigenvalue of Hecke operator in the case M =
(m,1,...,1), and the multiplicativity relations give all the other eigenvalues.

Here is the formula for the first coefficient of a Langlands Eisenstein series:

Theorem 17.2. Assume the ¢; are normalized such that (¢;, ¢;) = 1. Then

Apa((L,...,1),8) = co | [T L7(1, Ad ;)2 [T Z-Q+s—sed;xon)" |,

j=1 1<j<k<n

for some constant c,, depending only on n, and if one of the n; or ny, is 1, then the Rankin-Selberg L-function
is replaced by the completed L function for a Maass form, and if n; = ny, = 1, the Rankin-Selberg L-function
is replaced the completed Riemann zeta function ¢*(1 + sj — sg).

Recall that the adjoint L-function was defined to be

L(s,Ad ¢) = 52 29) (874((1;( ¢)

with completed adjoint L-function
1 o
L*(1,Ad ¢) = H r <M> L(1,Ad ¢)
, 2
1<j#k<r

Remark 17.3. The adjoint L-function at 1 is essentially the residue of the Rankin-Selberg Fisenstein series
at 1.
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Remark 17.4. Next week, we will talk about the Kuznetsov trace formula, which has a contribution from the
continuous spectrum - i.e. we will sum over integrals against the Eisenstein series. We want a power-saving
error term, so we’ll need to understand the size of the FEisenstein series coefficients - this is the motivation
for why we care about computing the first coefficient of the Eisenstein series.

We have good estimates for the Rankin-Selberg L-functions, but not for the adjoint L-functions. Conjec-
turally, we believe that c¢;° < |L(1, Ad ¢;)| < ¢, where c; is the conductor of ¢;, which is essentially
the sum of the squares of the Langlands parameters/the Laplace eigenvalue. The conjecture (lower bound,
the hard part) is proved for GL(2) due to Iwaniec — the lower bound is essentially equivalent to proving an
analogue of the prime number theory for the adjoint L-function.

Remark 17.5. The proof of this template method uses the adelic perspective, and can be found in|this paper
of Goldfeld, Miller, and Woodbury.

Let B, be the Borel Eisenstein series; in this case, we know the first coefficient is due to Selberg (up to a
constant)

Ap, ((1,...,1),8) = [ ¢ +s;—si)

1<j<k<n
Recall that the Langlands parameters of the general Eisenstein series were of the form
(041,1 + S1y.+-,01 ny + 81,021 + 82,44, a2,n2 + 82504, ar,l + Spyeey Oy, + 57’)7

where o, are the Langlands parameters of ¢;, and recall that

Ag(L,... D> = m
for some constant ¢, or with the normalization of (¢, ¢) = 1,
|Ag(1,...,1)| = ¢, L*(1,Ad ¢)~V/2
The main idea of the template method will be to replace ® by an Eisenstein series with the same Langlands

parameters and same first coefficient.

Example 17.6. Consider the case 3 = 2+ 1. Here let ® be a Maass form for GL(2) with Langlands
parameters (a1, —aq). Then we want to show that

Ap,  o((1,1),s) = cL*(1, Ad ®)~'/2L*(1 + 3s1,®) "
up to some constant c. Recall that s = (s1, $2) with 281 + so = 0.

1. Replace @ by Ep,(*, (a1, —aq)), which has the same eigenvalues of the invariant differential operators
on h? as ®; i.e. has the same Langlands parameters. This creates a new Eisenstein series on Py
denoted Ep; new(g, 5%).

2. EB, new has the same Langlands parameters as Ep, , ¢, and it has to be a Borel Eisenstein series,
because it only involves powers of y! The Langlands parameters of Ep, new are (s7,53,55) = (a1 +
51, —a1 + 51, 82).

3. We now use the formula for the first coefficient of the Borel Fisenstein series (up to a constant factor):
(C*(1+ 87 —53)C" (1487 — 5)¢C"(1+ 55— 53) 7 = (C"(1+201)¢" (1 + 1 +351)¢" (1 — a1 +351)) "

Now, we need to take into account that we want the Fisenstein series we replaced ® with to have the
same first coefficient as ®. The first coefficient of Ep,(*, (a1, —a1)) is C* (14 2a1) 7!, but [Ay(1,1)] =
L*(1,Ad ¢)~Y2 (up to a constant). Hence we need to scale our factor by

L*(1,Ad ¢)~'/?
C*(l + 20&1)_1

The ¢*(1 + 2aq) cancels, and we note that *(1 + aq + 3s1)¢*(1 — aq + 3s1) appears in the completed
L-function for ®. Thus we get the desired result.

(C* (14 2a1)C* (1 + a1 + 351)C" (1 — ay +3s1)) .
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Example 17.7. Now consider the 4 = 2+ 2 case. Here we care about

EP2,27¢1®¢2 (ga 5);

recall that s = (81, 82) with s1 + so = 0. In this case we want to show that the first coefficient is of the form
Ep, 0 =L"(1,Ad ¢1) 3 L*(1, Ad &) 2 L*(1+ 251,61 x ¢2) ",

1. Replace ¢1,¢2 by Ep,(*,a1)Ep,(x,a2), where (a1, —ay) are the Langlands parameters for ¢1, and
ag = (ag, —ae) are the Langlands parameters for ¢o.

2. We get Borel Fisenstein series Ep, new(g,s*), where s* = (s1 + a1,81 — a1, —s1 + ag, —81 — a2).

3. Using the formula for the first coefficient of the Borel Eisenstein series, up to a constant, we get first
coefficient

(g*(1 +201)C" (1 +200) [ (1 + 251 o & a2))71 :

where the product is taken over all j possibilities. This product turns into L*(1 + 251, ¢1 X ¢o2) ™, up
to some constant.

Finally, we take into account the normalization, so we multiply by

L*(1, Ad ¢1)"V/2L*(1, Ad ¢o) /2
(14 201) 1 (1 + 2ap) 1

This cancels the remaining Riemann zeta factors and gives the desired result.
This method generalizes similarly to any Langlands Eisenstein series.

Remark 17.8. Note that the first coefficient involves Rankin-Selberg L-products — one can use this method
to give another proof of the functional equation of Rankin-Selberg L-function (Shahidi-Kim).

Next time, we will complete the computation for all Fourier coefficients of Eisenstein series towards the
Kuznetsov trace formula.
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18 Lecture 18 - 4/3/25

18.1 General Fourier Coefficients for Langlands Eisenstein Series

Recall that we defined the normalized Whittaker functions

F<l+aj—ak)

2 a+pp, —2 e U1

Walg) = H — |wnU9‘Bn n o—2m(u1,2 Un l,rL)du’
1<j<k<n T 2 Un(

where w,, is the long element (1s on the anti-diagonal).
Today, we are interested in computing the Mth Fourier-Whittaker coefficient of Ep ¢, where M = (my,...,my_1) €
ZrY P="P,  n,and ® = @---®¢,, with ¢; a Maass form on SL(n;,Z). As we have discussed before,
this is determined by the integral

1 1

—_— AP@ (M, 8) *
[ oo [ Bty st de = SRS, (047),
o o ITizi my

where ap ¢ (s) are the Langlands parameters of Ep ¢(s) and

my...Mp—1

M* =
Mnp—1

1

Remark 18.1. Note that this definition of the matriz differs from Dorian’s book because we do mot swap
the order of the m; here, unlike in Dorian’s book. In addition, note that the normalized Whittaker function
makes the coefficients slightly different from Dorian’s book.

Remark 18.2. One can instead compute this integral directly with the Bruhat decomposition and Klooster-
man sums, but that is extremely tedious.

Here Aps(M, s) is the Mth Fourier coefficient. Last time, we discussed that
AP7<I)(M7 S) = AP’¢((17 ey 1)7 S))‘P,<1><M7 5)7

where Ap o (M, s) is a Hecke eigenvalue which can be computed via the Hecke operators T,,, and the multi-
plicativity relations.
In particular, we will consider the simplest case

)\p@((ﬁ% ]., ey 1), 8),

the eigenvalue of the Hecke operators T,,.

Theorem 18.3. Aps((m,1,...,1),s) = Z H Ao, (cj)c;j.

c1eer=m j=1
c; N

Remark 18.4. As far as Dorian is aware, the first time this formula appeared was in his book.

Proof. We apply T}, to the power function times ®, using that the Hecke operators are I',, invariant.
It is enough to compute

n—1

Tn®(y)|y|3" =m™"=

T
Y e (ey)) det(mn, (cy))*7,
C1 " Cpn=m =1
Cie<Cyp

where c¢ is the matrix appearing in the definition of the Hecke operator.

We can then rewrite the sum in terms of r blocks of size n; on the diagonal; each block of size n; with
determinant ¢;, and appearing in the definition of the Hecke operator T, for SL(n;,Z), so the T,, operator
reduces to individual T, operators on small blocks on the diagonal. We also need to sum over elements lying
above the n; x n; block, which do not affect the Hecke operator computation — these contribute C?l+m+”"’1

to the comptutation. Working through everything gives the desired answer. O
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18.2 Non-vanishing of L-functions via Eisenstein series

This result was first proved by Selberg for GL(2), although unpublished. It was then extended by Jacquet-
Shalika to Chevellay groups and general number fields.
We remark that ¢(1+it) # 0 for ¢ € R is equivalent to the prime number theorem.

Theorem 18.5 (Jacquet-Shalika). Let ¢ be a Maass form for SL(n,Z) with functional equation for the
L-function invovling s — 1 — s. Then L(1 + it,¢) # 0 for all t € R.

We state the functional equation for Eps(g,s); given o € Sy, then for P = P,, . ,,., we define oP =
Py1),..0(r), 00 = o(1) @ - -+ @ (), and similarly for s = (s1,...,s,). Then Eps(g,5) = Esp,o¢(g,08).

Remark 18.6. Note here that this definition does not normalize the first coefficient to be 1.
One can also show that for the terms M = (myq,...,m,—_1), the functional equation also holds.

Example 18.7. In the SL(2,7Z) case,

*(2s1) _ 2\/y 025, () i
E — ., 1/2+s1 C ( 1 1/2—s1 1 K, (2 2mine

where s = (s1,—81).
Assume (14 itg) = 0 for some ty € R. We note that

(C"(2s +1)E(x,5),¢) = 0,

as the integral picks off the constant term of ¢, which is 0.

Now, consider (*(1 + itg)E(g, ”70) Using that we have a zero, this means the the constant term is 0, using
the fact that ((1 — itg) = 0 by conjugation, and using the Riemann zeta functional equation. Moreover, we
note that as y — oo, the Eisenstein series does not vanish and is non-constant. Hence, (*(1 + itg)E(g, %)
is a Maass form ®.

As we discussed before, (&, ®) = 0. However, this contradicts the assumption that ® does not vanish. Hence,

we get a contradiction.
Remark 18.8. With this method, Sarnak can get an error term on the prime number theorem.

One can apply this technique more generally — see Dorian’s book for an example on Ep, | (g, s). In this
case, the first coefficient is L*(1, Ad ®)~Y/2L*(1 + 3s,,®)~ !, so everything is multiplied by L*(1 + 3s1, ®).
We can do something similar, letting s; = itg/3.

Next time we will do the Kuznetsov trace formula.
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19 Lecture 19 - 4/8/25

The Kuznetsov trace formula is obtained from taking two Poincare series and taking their inner product.
One way to evaluate this is by taking the spectral expansion of one of the Poincare series and unraveling the
other series, giving the “spectral side” of the trace formula. The other way is to take the Fourier expansion
of one of the Poincare series and unravel the other series, giving the “geometric side”.

19.1 Poincare Series

Definition 19.1. Let Py : R — C be a test function such that Py(y) < y'* when 0 <y < 1, and < y~*¢
when 1 < y. Moreover, letting u = (1 u11> , define (u) = 2™, Let M = (73 (1)> with m € Z nonzero.
LetT'= SL(2,7Z) and T, be the Borel subgroup. Then

PM(g,Py) = Y P(Mrg)p(Myg),
YEL o\

(s )~

19.2 Kuznetsov Trace Formula for SL(2,7Z)

Consider two Poincare series PM (g, Py) and QY (g,Qo), with m,n nonzero. We are interested in the inner
product

where

is a function P : h? — C.

dx dy
y?

(PM(x, Py), *,Qo)) = / M(g, P))Q (g, Qo)

y T
0 1
As mentioned before, we evaluate this in two ways.

where g =

1. We use the spectral expansion of PM and unravel QY , giving the spectral side of the KTF.
2. Use the Fourier expansion of PM and unravel Q", giving the geometric side of the KTF.

Remark 19.2. The Selberg trace formula is similar - breaking up SL(2,7Z) via conjugacy classes or double
cosets to get two sides.

19.3 Spectral side

Let {n;};,_; 55 be an orthonormal basis of Maass forms for SL(2,Z). Then the spectral decomposition
tells us

= 1
PN[(g,Po) = Z<Phj(*,P0),77j>77j(g) + E/R (s1) <PNI(*,P0)’E(*75)>E(975) dSl
j=0 e(s1)=0

where here s = (s1,—s1) are Langlands parameters, explaining why the integral is over Re(s;) = 0 (rather
than 1/2).
Hence, we get that

<PM(97PO)7QN(97Q0)>
:Z<PM(*aPO)an]> <nj(g)’QN(g7Q0)> + %M/R ) <PM(*,P0),E(*,S)> <E(*7s)7QN(*’QO)>d81
) e(s)=
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To understand this, we need to understand

(PY P ) = [ PG P
r\p?

Using the summation definition of P (g, Py) and making the change of variables g — v 1(g), we get
dz dy dz dy

[ RS = Y [ Qg S

~1(I'\b?) y ~1(T\b2) Yy

yET\I 77 yeTo\I' 7Y
27mmx y x dl’dy
[ L e (3 3)) 5

J=0
= 0 1 omima
{fy_o o+ e2miman (o 1 iy) da Po(my) %,

as the integral over x picks off the mth coefficient of 1);, and m is nonzero. The j > 0 term gives

A,(m) / " iK, <2wmy>Po<my>‘;—'§

Here A;(m) is the mth coefficient of 7;, which splits as A;(1)A;(m). We also need (P, E(x,s)), which

evaluates as - q
A Y
AoV [ P (2m) -5

0

where the y/m comes from a change of variable. Here let

dy
zr] / Py(y)Ks, (2my) == IR

where 7; has Langlands parameter (ir;, —ir;) and Laplace eigenvalue i + TJQ. = A;. Plugging these equations
in the spectral side gives

(PM (%, Py), Q" (x, FZA )Pﬂ(ZT])QO(ZTJ) \/: A(m, 51)A(n, s1) P (s1)Q (s1) dsi -

—100

Remark 19.3. Note that SL(2,Z) Maass forms are self-dual (in particular, the Hecke operators are self-
adjoint) to get that the Hecke eigenvalues \; are real. Hence, some of the conjugates on the right hand side
can be simplified.

19.4 Geometric Side

We move to the geometric side, which is harder to compute.
The classical version of the Poincare series is given by

PM P P 27rzmw QWimRe( ‘:jis )
(9, Po) = Po( +Z Z (|cz+d|2)e )

c=1 dezZ
(C7d):1

where here a and b are chosen such that (CCL Z) SL(2,Z). However, for each choice of (¢, d), the summation
does not depend on the choice of (a,b).

On the RHS, there will be Kloosterman sums

S(m,n;c) = Z 2mi( =)

a=1
(a,0)=1
ad=1 (mod c)
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Remark 19.4. Andre Weil proved the bound of < ¢'/?%¢ as an application of the Riemann Hypothesis for
curves — this is why this side is known as the “geometric side”.

We can compute the nth Fourier coefficient of PM:

Lemma 19.5.

1 > o0 y m
PM P —2minx dr = 6m nP S ; / P my 72ﬂzz<m+ny) de .
/0 (9, Po)e z nFPo(my) +y E (m,n; c) 0 2y(x? +1) € r

c=1 -

Sketch. We have that

1 1 oo
/ PM(g, Py)e=2mine dxzémwnPO(my)—i—/ Z Z

my . az+b _ .
PO ( > e?ﬂ'sze( cz+d)e 2minx d.’E,

0 0 p— dez ICZ"‘d‘2
ged(e,d)=1
then computation is done. More details can be found in Dorian’s trace formula notes on his website. O

We now apply this formula and unravel Q). Let

> o0
P e—
I(y) = S . po(_—" TS e
() y; (m7n7c)/0 0 (c2y(g€2 n 1)> e v "
Specifically, unraveling gives
es} 1
D (), —2TinT dzd

(P P).QY (5, Qu)) = [ [ PM (g, PGalnge e

y=0Jx=0

Hence, the Kuznetsov trace formula comes out as

FZA A B ir) Qi) + Y [ Al 50 A, s1) B (s) @) d

—100

dy —_ —Qﬁir(im +ny) dz dy
—Omn P - 2y(x2+1) .
5 /0 @t + Y stmenie) [ [ A (s ) Qe ;

Here we note that the main term is the first term on the right hand side.

19.5 Application of Kuznetsov Trace Formula to Weyl’s Law
We want to show that

We will end up showing that

and a method of Iwaniec will show that this is equivalent.

Remark 19.6. We can remove the adjoint L-functions for GL(2) and GL(3), but not in general.

Choose m =n = 1. Then |4;(1)]? =

L*(T,Ad n;) — L(1,Ad n,)l‘(l+2” )F(l—zirj> .
Recall that . .

. Y
Pl(ir) = / Po(y)Kir(wa)W.
0
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We have inverse transform (the Kontorovich-Lebedev transform)

_ %/_Oo Pg(ir)\/ﬂKiT(%y)F(ir)iM

Let R > 5 and T — oo. Consider test function of the form

2 (24 R42W\ (24 R-2W
P (W) =e 2T (T) r (+4> .

Note that by Stirling’s formula,

T (2+RZ—2W) T (2+R—2W

1 )N\/%TR

r (1+;m~j) r (1—;m) J

so on the spectral side, the main term becomes

o ) /\R
A;(DPIP = V2mel/t —X/T
Z| DPIPEalirg = Vare e 3 e pr Sy v e 3 I AT

j=1
where the approximation comes from partial summation and from using the fact that e=*i/ r? roughly counts
A up to T2. The main error term comes from the Eisenstein series, the error term on the spectral side.

To evaluate the main term on the geometric side, we will need to use Plancherel’s formula. We will do this
next time.

69



Austin Lei

20 Lecture 20 - 4/10/25

20.1 Main Term in GL(2) Kuznetsov Trace Formula

Recall that we had a smooth test function Py : R>q — C with the growth condition |Py(y)| < y'*¢ if
0<y<1andy Pif1<y. We alsohave the Kontorovich-Lebedev transform

%W%=Am%@ﬂﬂm%w¥

and the inverse transform - d
r

Py(y) = —/ Pﬁ(ir) YK (21Y) .

7 ) TV BGIE

Last time, we showed that the main term M of the Kuzentsov trace formula was

M:m/\mwwﬁ.
0 Y

o dy 1 [ dr
Py(y)?—= = —/ Pir)|? .
/0 ‘ 0( )‘ yg p —oo| 0( )l |F(Z’I’)|2

Theorem 20.1 (Plancherel).

Proof.
e dy o 1= dr dy
Py 2 :/ Py(y / ~ Pir yK;-(2my
o mweE= [ n [ R em) g
1 /°° i /OO dy dr
== P (ir Po(y)VyKir(2my)—5 =5
. O( ) =0 0( )f ( )yg |F(Z’I")|2
1 [ dr
== PiGr) P (ir) ————
- AR
as desired, where we use that K;. = K_;,. O]

Hence to choose a test function Py, it is sufficient to consider the conditions on Pg. Last time, we chose

. <2+R4+ 2ir> 2

r2

P%R(ir) = e 272

)

where T'— oo and r» > 5. Then the main term in this case is

_m/ wﬁw

2m/ 2+R4+2'Lr)| O
INCZRIE

When r > T, we get exponential decay, so the main contribution comes from r ~ T. Applying Stirling’s

formula
IT(0 + it)| ~ V2r|t|7 /251
gives the asymptotic as T — oo

A 2ﬁ ooe_% ((1+T’)R/4)4
T Jo (L +7r)=1/2)2
o0 2

~— e~ (1+7)Fldr
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where the final integral goes to a constant as T'— oo and the transformation r — 77" is used. TODO: This
calculation doesn’t seem quite right.
From the spectral side, this is equivalent to a summation of the form >, ., a AT, Via Abel partial summa-
tion, one can transform the this into information about ), _, ax, and it turns out to be asymptotic to T?;
i.e. the dependence on R goes away.

20.2 Orthogonality for Fourier Coefficients of Maass Forms

We spend some time discussing the history of results in this direction.

e In 1837, Dirichlet showed an orthogonality relation for Dirichlet characters xy (mod q)
3 x(m)(a) = 6
N X\m)X(a) = 0q=n m .
¢(q) < a=m (mod )
One can think of Dirichlet characters as GL(1) automorphic forms/representations. Naturally, one can

ask if it is possible to extend this to higher GL(n).

e The first result in this direciton is from Bruggeman 1978:

2 X . .
o 17 S A ()X, ()

T—oo T 4= cosh(mr;)

e/ =

m=mn,

where A;(m) is the mth Fourier coefficient of an SL(2,Z) Maass form ¢; with Langlands parameter
(irj, —ir;) and laplace eigenvalue \; = 1 + rs.

For GL(2) or higher, this is an infinite sum, so we need an exponential decay term for convergence.

e In 1984, Sarnak showed a similar result in his paper Statistical properties of eigenvalues of Hecke
operators.

e In 1997, both Conrey-Duke-Farmer (Distribution of Hecke eigenvalues) and J.P. Serre showed a result
for holomorphic modular forms (Repartition asymptotique des valeurs de l'operateur de Hecke) — these
were papers talking about the vertical Sato-Tate conjecture (fixing a prime, and averaging over a
family of modular forms and seeing how a, varies as the family changes), so these kind of orthogonality
relations come into play.

e The next result is from Fan Zhou, a student of Dorian’s:

Conjecture 20.2. Consider an orthonormal basis of Maass forms {¢;},_, 5 for SL(n,Z), and each

®; has Langlands parameters ald) = (agj), ... ,a(j)) with Hecke eigenvalues \j(k), for k =1,2,3,....
Let L; = L(1, Ad ¢;) be adjoint L-functions, and let hp : C* — C be a smooth test function with
support on eigenvalues 0 < A(¢;) < T.
Then o
) N /. hr(aY
S A (0N (m) e

ZOO hr ()
j=1 »Cj

= Op—m + O(T_g),

for some 6 > 0.

e In the same year, the conjecture was proven for the first time for SL(3,7Z) by Kontorovich and Dorian:

- TOL('
Ay (m) (0) 2 g

oo hT(alj
e, Fel)

= Ot + O(mL?T~27¢).

This A" ends up being up some P% g function. Simulatenously, a result like this was proven by Blomer.

71



Austin Lei

Remark 20.3. Applications of this are vertical Sato-Tate and Weyl’s law with a power-saving error
term. It is possible to get rid of the L; weighting for SL(2,7Z) and SL(3,7Z), but it is unknown how to
do this for SL(4,7) or higher. Conjecturally, )\j_a < Lj < Aj; the lower bound is the bound that is
difficult to prove.

e In 2014, Blomer, Buttcane, and Raulf got improvements on the orthogonal relation in SL(3,Z).
e How about for SL(4,Z)? Stade-Woodbury-Dorian proved Fan Zhou’s conjecture for SL(4,Z) in 2021.

e Also in 2021, Matz-Templier, Matz-Finis proved Zhou’s conjecture for all SL(n,Z) with n > 2 using the
Selberg trace formula, but with worse error term. The residual spectrum appears in the computation
for Selberg trace formula, but not in the Kuznetsov trace formula, as the Poincare series are orthogonal
to the residual spectrum.

e In 2024, Stade-Woodbury-Dorian, Nelson-Jana, Blomer all have results for all GL(n) using the KTF.
Next time, Dorian will give the main idea of the approach in his paper. Nelson-Jana/Blomer avoid
contributions by the continuous spectrum by a theorem of Kazhdan. The error terms are all very weak.

o Stade-Woodbury-Dorian prove Zhou’s conjecture with very strong power savings for SL(4,Z) and
SL(5,Z). For SL(n,Z), for n > 5, they prove Zhou’s conjecture (with power-savings error term) with
two conjectures:

— Lower bound conjecture for L(s, ¢; x ¢¢) on Re(s) = 1. If ¢; has Langlands parameters al) with

analytic conductor
n

c(¢;) = [T + 1)),

i=1
then we want

L(1+it, g5 X de) > (c(eg)e(¢e)) ™ (1 + [t))7=2.

Remark 20.4. This appears in the Fisenstein series contribution in the trace formula, and can
be proven up to SL(5,Z). If we knew ¢; x ¢g was automorphic on SL(j x ,Z) (a conjecture of
Langlands), then this could be proven.

Remark 20.5. Qiao Zhang (another student of Dorian’s) proved that for ¢ on SL(n,Z) and ¢’
on SL(n',7Z),

L(1+it,0x ) > (e(@)e(@)) (2 4+ |14 (777)e

where Oy =n+n' +¢.
If one can improve this by dividing the exponents by a factor of 2, then Dorian’s result would hold.

— Ishi-Stade conjecture: fooo \/ﬂKir(y)ys%y ~T (SZJ) r (572“«) satsifies a functional equation s —
s+ 1. The conjecture is that a functional equation of this type holds for all SL(n,Z) Whittaker
functions. For SL(3,Z), you get a product of six gamma factors over one gamma, and this
conjecture holds. This is proven up to SL(7,Z).

Next time, we will do the Kuznetsov trace formula for SL(n,Z), both the spectral and main term.
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21 Lecture 21 - 4/15/25

I am very busy, so these notes will be unedited and contain more mistakes than usual. I hope to get them
edited by the end of May.

21.1 Whittaker Transform

This will be the generalization of the Kontorovich-Lebedev transform for GL(n).
Definition 21.1. The vector space of Langlands parameters is denoted
H" ={a=(a1,...,0,) €C" |1 + -+ o, =0}.

We once again redefine the Whittaker functions; Dorian is revising his book which leads to small revisions
in definitions.

Definition 21.2. Let o € H"™. Then for g € h", with Iwasawa decomposition g = xy, the normalized
Whittaker function for SL(n,Z) is defined by

T (1+aj—ak)
2 -
Wi(g) = H W/ wnug|f PP 1 (u) du.
1<i<j<n T 2 Un(R)

This function is invariant under any permutation of Langlands parameters — i.e. it satisfies a functional
equation. Here we use + for the even Maass forms and — for odd Maass forms.

Remark 21.3. If g is a diagonal matriz, we can assume a + sign; only the x-coordinates matters for the +
sign. In that case, we drop the £ sign.

Proposition 21.4. Let f : R";' — C. Then we define the Whittaker transform f*(H") — C by

e} 00 n—1 dyk
Fa= [ [ e []
y1=0 Yn—1=0 k=1 Y&

with inverse transform

1 fH@)Waly)

f(y) = n—1 QEH™ = da
Re(a;)=0 ngk#éﬂn ( 2 )

Proof. Proof can be found in Dorian’s paper with Alex Kontorovich. O

21.2 Poincare Series for SL(n,Z)

Remark 21.5. These definitions may vary based on source — could include/not include test function function,
power function, character.

The ingredients we’ll want:

mimsg ... Mp—-1
mimo...Mp_9
e M =(my,...,myu_1) €Z" ' and M* =

mi

° ¢]V[(U) — 627Ti(m1u1,2+'"+mn71un71,n)

e A smooth test function p : h” — C satsifying p(zy) = p(y).

Definition 21.6.
PMg = > p(M*yg)eu(r9),
YEU L (Z)\SL(n,Z)

where here Y (xy) = Yar(x).
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21.3 Spectral Expansion of SL(n,Z) Kuznetsov Trace Formula
Let F € £L2(SL(n,Z)\b"), orthogonal to the constant function. Then we have

Z (F,9) 9;(g Z Z cp /1151+~"+7l7-57~:0 (F,Epa(*,5)) Epa(g,s)ds,

j=1 n=ni+--4n, d=¢;, @ Q¢;, Re(s;)=0

where the ¢; are an orthonormal basis of Maass forms.
We need to compute

(PVog) = [ PM9E g dg

Assume that M is chosen such that none of the m;s are 0; hence, there is no contribution from the residual
spectrum (i.e. there is no residual spectrum in the spectral decomposition of the Poincare series).
Unraveling the sum gives

n—1

P(M* )i (x dz; ; T _—
L, o P0G T e I

1<i<j<n k=1

Note that we can view split the integral, and the integral over x correspond to picking off the Mth coefficient
of ¢;, as we know that we have Fourier expansion

o= X Sy e (e (1)),

YEU,—1(Z)\Tyy—1(Z) m1=1 Mp—2=1m, _17#0

(PM ;) = A, (M) <H mk("a ’“) P,

where a(?) are the Langlands parameters of ¢;; along the way there will be a change of variables y; — y;/m;.
Similarly,

<PM Epa(*,s > AP<I> M,s (H mk(nz k)> Pﬁ(ozs)

where o is the Langlands parameter of Ep ¢(s).
Running through the computation gives

(PM,PMY) =53 " Ay, (M)P|PH(aD)]?,

which we can write as C' + E, where C' is what we want for the orthogonal relation and E is the continuous
spectrum. Looking at the Fourier expansion will give M + K, where M is the main term and K is the
geometric term (primarily Kloosterman sums). This will give the Kuznetsov trace formula.

Remark 21.7. This gives better results than the Arthur-Selberg trace formula because they have to deal with
the residual spectrum.

21.4 Kloosterman sums for SL(n,Z)

Now, we’ll need to deal with the Kloosterman sums. We need the Bruhat decomposition for this:

Definition 21.8. Let n > 2. Then we have the Bruhat decomposition
GL(n,R) = B, (R)W,, B, (R),

where B, (R) = ) and W,, is the Weyl group of GL(n,R).
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Proof. One can iteratively construct the decomposition using row/column operations corresponding to
B, (R). O

One can explicitely describe the decomposition, due to Friedberg:

Proposition 21.9. Fvery g € GL(n,R) can be written in the form g = ujcwus, where

E/Cn—l
Cn—l/cn—Q

02/01
C1

with w € Wy, € = det(w) det(g), and u1,uz € Uy,

Remark 21.10. One must put stronger conditions on uy and us for this to be unique (i.e. uy € 'y, and ug
in the complement, which we define later).

Definition 21.11 (Kloosterman sums for SL(2,7Z)). For SL(2,Z), we have the Kloosterman sum

S(m,n;c) = Z e2mi( =),

a=1
(a,c)=1

We have the Weil bound of < ¢!/2 + ¢ - equivalent to RH for an elliptic curve.

We'll use the following notation: let I';, = SL(n,Z). For w € W,, let T'y, = (w™(Un(Z))Tw) N Uy (Z).
(w™H(Un(Z))Tw will correspond to matrices with 1 on diagonal, with some elements on the top still there,
over all possible rows/columns). Also, let G, = U,wD,U,, where D,, is the set of diagonal matrices.

Definition 21.12 (Kloosterman Sum).

Suw(th, ¥ ¢) == > W (b1)¢ (bs).

’YEU'IL (Z)\(FnﬁGn)/Fw
~y=bicwbs

—1 _
Example 21.13. In the SL(2,Z) case, let c = (Cb CO), w= ((1) 01>, and I'y, = (1 >1k> =Uy(Z). Let
1

/ /
b1 = (1 bl{q) and by = (1 bz{cl). Then for any v € SL(2,7Z), we have the Bruhat decomposition
v = bicwbs,

where biby, =1 (mod ¢1). In this case,

Sw(@,d'se) = > b(b)d (ba),

b} (mod c)
where we choose M and N for our characters.

Next time we’ll continue the computation of the geometric side of the KTF.
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22 Lecture 22 - 4/17/25

I am very busy, so these notes will be unedited and contain more mistakes than usual. I hope to get them
edited by the end of May.

22.1 Kloosterman Sums

Recall last time we defined Kloosterman sums for SL(n): Letting
1

Cn—1

Cn—1
Cn_z
Cc = 9
ca
c1
a1
Gw = UywDNU,, and Ty, = (w™ U, (Z)Tw) N U,(Z), we have that
Sw(’lpv’l/)/?‘:) = Z 1/’(b1)‘/’/(b2)
y=b1cwba
'YEU'rL(Z)\F'erGw/Fw
= -1
Example 22.1 (SL(3,Z) Kloosterman sum). Let ¢ = = , and w = 1 . TODO: is
C1 1

the minus sign supposed to be there? For the long element, T'y, = U3(Z). Let

1 g (3
bl = 1 (65}
1
and
1 B2 B3
b2 = 1 61 3
1

both in U3(Q), and let v = (Vi j)1<ij<s € SL(3,Z). Then consider any v € U3(Z)\SL(3,Z) N G.,/Us(Z).
Each ~ can be represented in the form bicwbs; one can solve for the coefficients of by and by. One finds

— 21 _ C1712—711732 — 11 _ C1723—721733 — 032 — 733 ; —
that oy = o X2 = o ; 3 = o pr = o , B2 = 1’ B3 = o Letting ¢pr(u) =

e2milmiuratmauzs) gnd analagously for ¥y, we get that

Su(War, ¥y, ) = 3

v21,732  (mod c1)
c1viz—7y11732  (mod c2)
c1y23—721733 (mod c3)

. 721 C1712=711712 )
27rz<m1 o Tme o )6271'1(77,1...).

For more details, see Dorian’s book.

One can define the Kloosterman zeta function for s = (s1,...,5,_1) € C"!, which converges for Re(s)
sufficiently large:

o0 o0 Sw , /7
Z('(/)?'(//NS) = Z Z w

c1=1 Cn—1=1 R

Remark 22.2. Recall the Selberg conjecture for eigenvalues of Maass forms \; > i. Selberg proved a bound
of 1—?’6 using properties of the Kloosterman zeta function.

Sarnak-Goldfeld (1983) showed a GL(2) Kloosterman zeta function bound.

2009« L
T Re(s) — 3

Remark 22.3. No bound like this has been shown for general GL(n) — it is an open problem.
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22.2 Properties of Kloosterman Sums

Here will briefly discuss some properties of Kloosterman sums.
Fix ¥, ¥, ¢, and c. One can show that there exists ¥/ and 1y~ such that

Sw(,(/}Ma wNa CC/) = Sw(¢M7 ’l/)N’a C)Sw(,(/)Ma wN”a C/)'
Theorem 22.4 (Friedberg, 1987). S, (¥, YN, c) # 0 iff w is of the form

I;
I,
I;,
with each I;; an identity matriz.
22.3 Fourier Expansion of Poincare Series
Recall that we had
PM(g) = S p(M*yg)(vg),

YEUR(Z)\SL(n,Z)

where p : h” — C is a test function with p(zy) = p(y). To compute the geometric side of the KTF, we need
to compute the Fourier coefficients of the Poincare series.

Theorem 22.5. Let Uy (Z) = (w™ Uy, (Z)w) UL (Z) and Uy (Z) = (w='Un(Z)Tw) U, (Z) (and analogously
for R). Then

= S w\Y, ) s C)y
/UH(Z)\UH(R)P (ug)n (w)d u= " Z Z (a1, VN, €)Jw(g: s, ¥ s €)

weW,, c1=1 Cn—1=1

where Jy, is the Kloosterman integral

Juw(g: Vs N, €) = / p(M* cwuag) P (wuzg)d us / Yar(ur)Yn (ur)d uy |
Uy (R) Un (Z)\Uw (R)

TODO: There might be a mistake with the vy, terms — see next lecture for possible correct term.

Proof. One can write

/ PM(ug)ipn (u)d*u = / > p(M yug)pm (yug) P (u)d u.
W (@\Ua(R) (D\Un (B)

R) yev, (2)\SL(n,2)

Recall that G, = U,, D,,wU,,, and our sum over +y can be split into a sum over U, (Z)\(SL(n, Z)NG,,) over all
w. Letting 'y, = (w™ U, (Z)Tw) N U,(Z), we can actually rewrite as sum over double coset representatives
of U,(Z)\(SL(n,Z) N Gy,)/T. Hence our sum can be rewritten in the form

Y OY Y% / p(M*bycwbyTug)ihas (brcwbsrug) by (w)d*u.

WEW, ¢ byba€Un(Q) 7EL, Y Un(@\Un(R
bicwba€Gy [Ty

One can show that p(M*bcwbatug) = p(M*cwbstug), as M*by = by M* for some by € U,(R), and using
that p(xy) = p(y). Moreover, one can show that

/Un(Z)\Un(R) /Uw(Z)\Uw (R) /Uw(Z)\Uw (]R)7
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using that U, -@: U,,. Using that v, is multiplicative, and a transformation from u + 7~ 'u that sums
over all shifts of U,,(Z)\U,(R). Hence our integral can be rewritten in the form

S Y e[ e | o1 cubsug) s (wbag i uad s,

WEW ¢ b1 ,ba€Un(Q) Uw(R)
b1cba€Gy /Ty

where v = ujus with u; € Uy, (Z)\U,(R) and ug € U, (R). Making the transformation u; — b;lul and
splitting the integral, and summing over b; and be gives

> Suw(tarvon,e) (/UW(Z)\UW(R) ¢M(U1)¢N(u1)d*u1> (/UW(R)p(M*CWU29)¢N(U2)d*U2> .

weWw ¢

Here we use the fact that wu; = vjw for some u} € U,(R), since u; € Uy, (R), to get rid of the u; in the
p. ]

Hence the Nth Fourier coefficient of p™ is of the form

ZZSw(lﬂM,¢N7C)Jw(ngMawnac)'

On the geometric side of the Kuznetsov trace formula, we get inner products of the form

(CE T snmr),
M w c
Unraveling and summing over w gives Whittaker transforms of the Kloosterman sums. We can approximate

these using the trivial bound on Kloosterman sums.

Remark 22.6. The proof of the trivial bound for SL(n,Z) Kloosterman sums is actually difficult — it was
proven by Mark Reader.
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23 Lecture 23 - 4/22/25

I am very busy, so these notes will be unedited and contain more mistakes than usual. I hope to get them
edited by the end of May.

23.1 Geometric Side of KTF

We will normalize the Poincare series

PY(g) = bu S p(Myg)dum(vg),

YEUR(Z)\SL(n,Z)

where by = 2;11 m,:k(n_k)/z, and p : B — C and p(ug) = p(g) for all v € U,(R), with M =
(my,...,mp_1) and M* as usual.

Last time, we stated the Fourier expansion:

pPM = Sw LN, ) Jw(g, U, N, ©),
/Un(Z)\Un(]R) (ug)on Z Z 2:: (Yms N, €)Jw(g, Yms PN, c)

weW,, c1=1 Cpn—1=1

where

Jw(gawMan\UC) :/

p(M*cwugg)wM(wuzg)md*uz/ Par(uy) o (ur)d ua,
Uw (R)

Un(Z)\Un (R)

where 4} = wu;w™! TODO: The last ¢y should be conjugated? Does that s (us) term exist?
Now on the spectral side of the Kuznetsov trace formula, we get that

(PM PNY=C+E

where C' is the cuspidal part

o0

C= ZAJ A;(M)|PHa D)2,

where ¢, is an orthonormal basis of Maass forms, with A;(IN) the Nth coefficient of ¢, and o) the Langlands
parameter of ¢;, and F is the Eisenstein part

E = Z CP,. . Z /7«131+"'+nr57‘:0 Ap (N, S)Ap’q)(M,s)|Pﬁ(ap,q>(5))|2,
Ppny,one P=¢1Q-Qor Re(s)=0

where Ap ¢ (N, s) is the Nth Fourier coefficient of Ep g.
Now, for the geometric side, we unravel PV and use the Fourier expansion of P. We will show that

(PM,PN) =M + K,

where M is the main term and K is the Kloosterman term. Here

M:bMNZ Z (wMa'l/}Na / / yawMawN» N* H (n— k+1’
c1=1 Cp—1=1 yl_O Yn—1= 0 —
and
n—1
K=bun Z Z Ss(ar, P, )/ / To(y, bar, vn, p(N*y) [ ] k(Ti)-&-l
WA, EWy c1=1  cpo1=1 =0 Yn-1=0 k=1 Yk
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Proof. We have that

(P, PY) = bN/ PY(g) > p(N*vg)en(rg) | d*g

Ta\b™ YEUL(Z)\T's

— by / PM (g)p(N"g)on (9)d*g
Un(Z)\b™

oo 0o -
Un(Z)\Un(R) Jy

1=0 Yn

ZbN/ / / PM (uy)p(N*y)iy (u)d*ud*y,
Un(Z)\Un (R) Jy1=0 .

where we use that uy = y'u for some diagonal matrix ¢’ (and similarly N*u = «'N*) and ¢ is invariant
under diagonal matrices. Manipulating more gives

n—1
dy
bN/ uy)Yn (uw)d up(N*y [
/yl 0 / Un (Z)\Un( ( ) ( ) ( )H yk(n—k)+1

k=1 Jk

Thus, using the Fourier expansion,

(PM.PVYy=ban D D D Sulwonrs ¥ns ) uly, Yar ¥, PN ) =i
weW,, c1=1 cpn=1 Yg
as desired. 0

The Kuznetsov trace formula is precisely
C=M+K-F,

where K — FE is the error term. By choosing the right test function, we can get the orthogonality relation
on the LHS, as desired.

23.2 The Main Term of the KTF

One can show from the definition of Kloosterman sums that

St (W, N, ) = {1 .

0 otherwise

Hence the main term reduces to

dyg
—bMN/ / Y, ¥ar, N, In)p (N*y)m
y1—0 Yn— 1—0 Yg
dyg

= bMN/ / </ p(M*U2y)¢M(Uzy)i/)N(Tm)d*w/ ¢M(u1)¢N(u1)d*u1> PIN*Y) ST
y1=0 Yn—1=0 Ur, (R) Un(Z)\Ux (R) Yy

Now, note that

/ Yar(ur)n (ur)d*ur = opr=n,
Un(Z)\Un (R)

and Uy, (R) is the trivial group. Hence,

0o oo R — dyk oo 0o .
M= 5M=N"MN/ / P(M™y)p(N*Y) et =5M=N/ / Ip(y)]*d*y,
y1=0 Yn—1=0 Yy y1=0 Yn—1=0

and by Plancherel, this is equal to
=0pm= N/ / | PE(y)[2d*y.

The proof of the Plancherel formula is the same for GL(n) as for GL(2).
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23.3 Choice of Test Function P*
Recall that P! is a function from Langlands parameters to C. We want to choose P! to be a polynomial
aft+ - tad

multiplied by a Gaussian e™ T

Remark 23.1. Assuming that all the Maass forms are tempered; i.e. the «; are pure imaginary, this sum of
squares is effectively a; = ir;. It’s conjectured that this is true — it’s proved for SL(2,7). For applications,
its sufficient to show that the contribution of non-tempered Maass forms is small.

Our polynomial Fr(«), dependent on a fixed even integer R, will be
n—2 R/2
FR(Q)ZH H (14—20%—2045) .
j=1 K,LC{1,2,....n} kek teL
|K|=|L|=j
Remark 23.2. You can show this for other polynomials, but this polynomial gives better error terms.

Now, we choose

of+tad 1+2R j —
P}u%T(Oé):e 12T2 FR <g> I | r + +aj A .
2 , 2
1<j#k<n

One can show that
|FR(OK)‘ < TR-D(n)+s

O

for a? + -+ a2 < T, where

is related to the degree of the polynomial. Combining with Stirling’s formula on the I" functions will give
the main term:

Theorem 23.3 (Main term of KTF).

n—1
M =6y-n Z CiTR(QD(n)+n(n—1))+n—i + O(TR(QD(TL)-i-n(n—l)))
i=1

With this choice, we can show:

Theorem 23.4. Let \;(M) be the Mth Hecke eigenvalue of ¢;. Then

- [P () B W13 p(on) g
> A (M)N;(N) =M+ O((MN) = TG ).

- 14a—ayg
Jj=1 ngj;ékgnr ( 2 )

This was proven unconditionally for n = 2, 3,4, 5.
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24 Lecture 24 - 4/24/25

I am very busy, so these notes will be unedited and contain more mistakes than usual. I hope to get them
edited by the end of May.
I am also not here for the last two lectures — so the notes for those will be from someone else.

24.1 Rankin-Selberg Convolutions

There are three cases to consider:

e GL(n) x GL(n): Done in 1940 for GL(2) x GL(2) by Rankin and Selberg. Done for general n by
Jacquet and Piatetski-Shapiro. This case involves Eisenstein series.

e GL(n) x GL(n 4+ 1): The easiest case.

e GL(n) x GL(m), with n < m — 1: Also done by Jacquet for Piatetski-Shapiro for special cases. Done
in general by Cogdell and Piatetski-Shapiro (done adelically).

The GL(n) x GL(n) case involves Eisenstein series. If one integrates

/ #(g)n(9)EB, (g,5)d"g
SL(n,Z)\bh™

by unraveling Fp, and expanding the Fourier expansion for 7 and unravel the U(n —1,Z)\SL(n — 1,Z) sum
in the Fourier expansion for 77, one gets that

L(s, 6 x ) = nsz z >B<M>

mn_l -mn71>

where M = (mq,...,my_1). Using the functional equation/analytic continutation for the Eisenstein series,
you can show the same for L. (We did this previously.)

24.2 Rankin-Selberg for GL(n) x GL(n + 1)
Let ¢ be a Maass form for SL(n, Z) and let n be a Maass form for SL(n +1,Z). Let M and M* be defined

k(n—k)
as previously, and let by; = Hk 1m; * . Then recall that we have the Fourier expansion

= Y oy ¥ Awmenar (7))

YEUR—-1(Z)\SL(n—1,2) m1=1 Mp—2=1my_17#0

and similarly
¢(<g 1>) 2 : 2 : } : } : ”rzlfn(mn) (M* (’Y 1) (9 1)) )
~y€U, (Z)\SL(n,Z) m1=1 —1=1m,#0

Here’s we’ll unravel the sum in the Fourier expansion for ) — there is no Eisenstein series here! In particular,
we compute

(9. mdet(x)"%) = /S — ¢(g)n<(g 1))det(g>5‘”2d*g
_ mla .. ) sign(my,) (M* (7 ) <g >) d 5*1/2d*
I L (7)) dettoy72arg

VEUL(Z\SL(n,z) M [y my 2
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Making the change of variable g — v~ 1g gives

_ 5 B(my,...,m, sien(m. N s— N
(maer(y™ /) =S B 5o [ g (ar (7)) Yaente) g
M (Z)\SL( (SL(n,Z)\b™)

[Iieimy > ~veU.@)\SLmnz)”?

B(m vt sign(m s— *
:/ Z(l—kw) ()W ”>< (9 1))det<g> V2
Un(Z)\b™ “pf H

mi,.. m o o sign(m x [ L - * *
- Z/ 1—mg)/ / ¢($y)W%g () (M ( y 1)) det(y)* 124 yd*z.
@\U®) [P n=0 Jy.i=o

We make the transformation y; — y1/m;. Note that the integral over x picks off the (mag,...,m,—_1)th
Fourier coefficient of ¢. We can then unravel the Fourier decomposition of ¢. Finally, we continue to make
the transformations y; — y;/m;y1. In the end, we get

ma. .. |mn|y1 e e Yn—1
mo... Mp—1Y1..-Yn—2

i i Z Bm1,.. mn)/ ¢(g)WSign(m")
~ by Un(@)\h" o

mi=1  mp_1=1m,#0 maYyi
oo o0
A(ma, .. B(mq,...,m _
=S > 3 Al 7w, (7 e T e
mi=1  mp_1=1m,#£0 (mimy™=" ... |mn|)® n=0  Jy._1=0 bl

This is some sort of generalized Mellin transform; note that L(s,¢ x 1) is the left term in the product.
Since there is no Eisenstein series, we need to prove the functional equation in a direct way. Define

Als, & x 77) 1= (077, det () /%),
Theorem 24.1. We have the functional equation
A(Sv(b Xﬁ) = A(l —3»$Xﬁ>,

where here ¢ = d(wn (g7 wy,) is the dual Maass form (associated to the contragradient representation),
with w, the long Weyl element (all 1s on the antidiagonal).

Proof. Let ¢ = w,(g~")Tw,. Then note that g* has Iwasawa decomposition

1 (—1)ln/2l+1 Y1---Yn—1
1 — X2 y2...yn_1

1 —Tn-1 Yn—1

Then
Als, & x 1) = (o, det()" /)

=/ ¢(g)n<<g 1)) (det g)*~/%d’g

SL(n,Z)\b"

=/ é(g")n ((gL 1)) (det g)*~*/2d"g.
SL(n,Z)\b"

s—1/2

Note that d*g is invariant under g — ¢*, and det(g*) = det(g)l/g_s. Using this gives

A(l - S, g X ﬁ)7
as desired. 0

Remark 24.2. One can generalize these techniques to unitary groups (no FEisenstein series) - this is called
the doubling method.
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24.3 Rankin-Selberg for GL(n) x GL(n')

This is the most difficult case — we’ll start it today. Here n <n' — 1; i.e. n < n/. We'll need the projection

operator — first discovered by Jacquet and Piatestski-Shapiro.

Definition 24.3 (Projection Operator). Fiz 2 < n < n’ — 1. The projection operator P,ﬁf, sending
Maass forms of SL(n',Z), projecting/mapping them to automorphic forms on the mirabolic subgroup P, 1 C

GL(n+ 1,R).
Let g € P, 1(R). We define
U1 ,n42
g
n' _nl-n-1 ! ! Unp+1,n42
P ¢(g) = |det(g)|” o
0 0 1

Uy, n’

6727ri(un+1,n+2+'“+un’71,n’)

un’fl,n’
1

[I

n+2<j<n’
1<i<y

Example 24.4. Let n =2 and n’ = 4. Consider P17 C GL(3,R), let ¢ be a Maass form for SL(4,Z), and

a b 0
letg=[c d 0] CP1(R). Then
0 0 1
L L L a b 0 Ui,4
d 0 u
pi :/// c 2,4
2(¢(g)) 0 0 0 ¢ 0 0 1 U3.4
0 0 O 1

e—2mu3,4 du1,4 du274 du3,4 .

One can evaluate this by expanding the Fourier expansion for ¢. Then

Piolg) = > > 2 A¢(1,;§:,j;m3)

vy€U2(Z)\SL(2,Z) m2=1 m3#0

v (o))

Next time, we’ll go through more examples, and then work through GL(n) x GL(n) using this method.
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