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1 Lecture 1 - 1/21/25

The real content will start on January 30th. There are colloquium talks on Thursday and next Tuesday -
you are strongly recommmended to attend.
Some of the content in the course will follow his book Automorphic Forms and L-Functions for the Group
GL(n,R). When I refer to “Dorian’s book” in the notes, this is the book I refer to.

1.1 History of Analytic Number Theory

• 1700s - Euler invents the zeta function ζ(s) =
∑∞
n=1

1
ns . Discovers the Euler product

ζ(s) =
∏
p

(1− p−s)−1.

Gets the functional equation for ζ in special cases (like for s = i).

• 1859 - Riemann gets the functional equation for all s; letting

ξ(s) = π−s/2Γ(s/2)ζ(s),

with

Γ(s) =

ˆ ∞
0

e−uus
du

u
,

he proves the functional equation
ξ(s) = ξ(1− s).

How? Riemann uses the known identity

∞∑
n=−∞

e−πn
2y =

1
√
y

∞∑
n=−∞

e−πn
2/y

then applies the Mellin transform: for a smooth function f : R≥0 → C, the Mellin transform is

f̃(s) =
´∞

0
f(y)ys dy

y . (This arises from a change of variable from the Fourier transform). More
specifically, you have to take

ˆ ∞
0

( ∞∑
n=−∞

e−πn
2y − 1

)
ys

dy

y
= π−sΓ(s)ζ(2s).

• Dirichlet, 1800s: Taking χ : (Z/qZ)∗ → C∗, you get the Dirichlet L function L(s, χ) =
∑∞
n=1 χ(n)/ns.

Shows that everything one can do with the zeta function can be applied to L-function. Can use them
to show that there are infinitely many primes in an arithmetic progression.

• Hecke, early 1900s: Generalizes previous exponential sums to theta functions

θ(z) =

∞∑
n=−∞

e2πin2z,

where z = x+ iy ∈ H. This function turns out to be modular: for

(
a b
c d

)
= Γ0(4),

θ

(
az + b

cz + d

)
= ε−1

d χc(d)
√
cz + dθ(z),

where χc is a Dirichlet character mod c and εd = 1 if d ≡ 1 (mod 4) and −1 if d ≡ −1 (mod 4).
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Hecke looks at modular functions: Recall that for

(
a b
c d

)
∈ SL(2,Z), a modular function f satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z),

for k ∈ Z>0. This implies f(z + 1) = f(z), giving periodicity in the x direction. If f is holomorphic,
we get a Fourier expansion

f(z) =

∞∑
n=0

ane
2πinz.

Hecke defines the Hecke L-function

L(s, f) =

∞∑
n=1

an
ns
.

We also have S =

(
0 −1
1 0

)
∈ SL(2,Z), taking z 7→ −1/z. This corresponds to taking y to 1/y.

This gives a functional equation for Hecke L-functions, with a symmetry on the completed L-functions
taking s→ k − s.
Moreover, using Hecke operators, Hecke was able to show that Hecke L-functions have a Euler product.
Everything Hecke does can be generalized to subgroups of SL2(Z).

• Gelfand, Piatetski-Shapiro: Replace the upper half plane with matrices: points x + iy are replaced

with

(
y x
0 1

)
=

(
1 x
0 1

)(
y 0
0 1

)
, where x ∈ R and y > 0, and examine functions of the matrices:

f(z) is replaced by f

((
y x
0 1

))
and f

(
az+b
cz+d

)
= f

((
a b
c d

)(
y x
0 1

))
. How can you do this? Will

be explained later. They also introduced automorphic representations.

This course will primarily focus on SL(n,Z), especially when n ≥ 3. Hence the matrix approach
becomes necessary.

• Jacquet-Godement: Introduced analogue of Hecke L-functions for cuspidal automorphic forms for
higher rank. Lots of results due to Shalika-Jacquet-Piatetski-Shapiro.

• Eisenstein series: Selberg proves analytic continuation and functional equation (proof involves Fredholm
operators). Langlands generalizes Selberg’s proof to arbitrary reductive groups. We will talk about
Eisenstein series for SL(n,Z) in this course.

1.2 Iwasawa decomposition for GL(n,R)
Before we mentioned functions of matrices as a replacement for functions on H. How do we make this work?
Recall that a matrix m ∈ Mn(R) is orthogonal if m ·mT = I, or equivalently if all the rows/columns of m
form an orthonormal basis. We denote the set of such matrices O(n,R).

In particular, note that O(2,R) =

{(
± cos t ∓ sin t
± sin t ± cos t

)}
.

Theorem 1.1 (Iwasawa). Every g ∈ GL(n,R) is of the form

g = xykd,

where

• x is an upper triangular matrix with 1s on the diagonal, whose elements are denoted xij, all real.

• y is a diagonal matrix, with y1y2 . . . yn−1 in the top left, y1y2 . . . yn−2 in the next entry, going down to
1 in the bottom right, with all the yi > 0.

• k ∈ O(n,R) = K, where K is used to denoted the maximal compact group.
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• d is a diagonal matrix with d0 on all entries on the diagonal, with d0 6= 0.

Example 1.2. In the GL(2,R) case, the Iwasawa decomposition g =

(
1 x
0 1

)(
y 0
0 1

)
kd. Hence we can

express
H = GL(2,R)/(O(2,R) · R∗).

In general, we get the generalized upper half plane

hn := GL(n,R)/(O(n,R) · R∗).

Proof. Recall that a positive definite matrix is a matrixm ∈M(n,R) such thatm is symmetric and xmxT > 0
for all nonzero x ∈ Rn, or equivalently m is symmetric and all its eigenvalues are positive. Moreover, note
that for any u ∈ GL(n,R), uuT is positive definite.
Consider any g ∈ GL(n,R).

Claim 1.3. There exists upper triangular matrix u, lower triangular matrix ` and diagonal matrix d, such
that uggT = `d.

Proof. View this as solving for u. There are n(n − 1)/2 parameters for u and n(n − 1)/2 equations (the
upper elements of `d need to be 0). This can be solved because ggT is full rank.

This gives that
ggT = u−1`d = d`T (uT )−1,

hence `duT = ud`T . Note that the LHS is an lower triangular matrix, and the right is an upper triangular
matrix, so ud`T = d∗, some diagonal matrix.
Further manipulation gives that uggT = d∗(uT )−1, so uggTuT = d∗. The LHS must be positive definite, d∗

must consist of positive entries on the diagonal. Let a be its squareroot. Then we can write

(aug)(aug)T = I.

Hence aug ∈ O(n,R), and hence we get the decomposition.

Here is an alternative proof using Gram-Schmidt:

Proof. Let a1, . . . , an be the column vectors of g−1 ∈ GL(n,R) and q1, . . . , qn be the outputs of the Gram-
Schmidt process for the ai. Let q be the matrix with the qi as columns. The Gram-Schmidt process gives
us an upper triangular matrix r such that

g−1 = qr.

Taking the inverse precisely gives the Iwasawa decomposition for g, as desired.
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2 Lecture 2 - 1/30/25

Last time, we talked about the Iwasawa decomposition. We defined

hn = GL(n,R)/(O(n,R) · R∗),

and showed that every g ∈ hn has the decomposition

g = xy =


1

1 xij
. . .

1
1




y1y2 . . . yn−1

y1y2 . . . yn−2

. . .

y1

1

 ,

where the xij ∈ R and yj > 0.

Example 2.1. In the case n = 2, we have

h2 =

(
1 x
0 1

)(
y 0
0 1

)
=

(
x y
0 1

)
.

This is isomorphic to the upper half place, with z = x+ iy, x ∈ R, y > 0.
This has complex structure, making it easier to study (holomorphic modular forms). However, hn, for n ≥ 3,
has no complex structure.

2.1 GL(n,Z) action on hn

We have an action of GL(n,Z) acting on hn, given via left-multiplication of matrices (modulo O(n,R) ·R∗).
This will be notated α · g, but sometimes I might be lazy and write it like pure multiplication.

Example 2.2. Consider α =

(
a b
c d

)
and g =

(
y x
0 1

)
, or equivalently z = x+ iy. (We will use g to denote

elements of hn, rather than z in Dorian’s book. We will reserve z for the classical n = 2 upper half plane
approach.) Then αz = az+b

cz+d , and similarly for α · g

α · g =

(
ay a+ bx
cy c+ dx

)
,

which we then need to quotient by the right element of O(n,R) · R∗ to get back into hn.

The theory of automorphic forms is all about functions

f : GL(n,Z)\hn → C.

Equivalently, for α ∈ GL(n,Z), g ∈ hn, k ∈ K = O(n,R), and d =


d0

d0

. . .

d0

, for d0 = 0, we want

functions
f(αgkd) = f(g).

Example 2.3. When n = 2, this is precisely the theory of modular forms.
In this case, we have the standard fundamental domain for SL(2,Z)\h2{

z ∈ h2 : |x| ≤ 1/2, |z| ≥ 1
}
.

What is the area of this region? It is precisely the integral

ˆ 1/2

−1/2

ˆ ∞
√

1−x2

dxdy

y2
=
π

3
.
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Here dxdy
y2 is the hyperbolic measure. It is an invariant measure: it is invariant under the action z 7→ az+b

cz+d .
How does one show this? Note that we can write

d

dz
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

d

dz
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

so d
dz = 1 and d

dz = 0. Hence a holomorphic function can be defined as a function f : C → C such that
∂
∂z f = 0.
Then we can express

dxdy

y2
=
−i
4

dz ∧ dz

Im(z)2
,

where dz = dx+ i dy and dz = dx− i dy.

Now, applying the action of

(
α β
γ δ

)
∈ SL2(R) on the RHS and applying the quotient rule gives

−i
4

dαz+βγz+δ ∧ dαz+βγz+δ

Im
(
αz+β
γz+δ

)2 = − i
4

dz
(γz+δ)2 ∧ dz

(γz+δ)2

Im(z)2

|γz+δ|4
=
−i
4

dz ∧ dz

Im(z)2
,

hence the measure is invariant.

We’ll want to generalize this idea to GL(n), but this approach doesn’t generalize naturally, since we lack
complex structure.

2.2 Invariant measure on hn

We will want to integrate GL(n,Z) invariant functions over hn, so we need to define an invariant measure.
Let g = xy ∈ hn.

Proposition 2.4. The measure

dg =

 ∏
1≤i<j≤n

dxij

(n−1∏
k=1

y
−k(n−k)−1
k dyk

)

is invariant under g 7→ αg with α ∈ GL(n,R).

Proof. It suffices to prove that measure is invariant for a set of generators for GL(n,R). In particular,
GL(n,R) is generated by matrices Bn,Wn, Dn, where Bn are upper triangular matrices, Wn is the Weyl
group of GL(n,R) (the set of all matrices in GL(n,Z) with precisely one 1 in each column and row), and

Dn =


a1a2 . . . an−1

a1a2 . . . an−2

. . .

a1

1


are diagonal matrices.

Remark 2.5. Why this notation for the diagonal matrices? Since we quotient out by R∗, we can have the
lower right element be 1. The formulas are all nicer with the ai written this way. (There’s also intuition
involving root systems that Dorian doesn’t want to get into.)
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First, we check the invariance under the action by Dn. Let α =


a1a2 . . . an−1

a1a2 . . . an−2

. . .

a1

1

.

For any g = xy, we can write αg = (αxα−1)(αy), where (αxα−1) is an upper triangular matrix with 1s on
the diagonal and

(αxα−1)ij =

 n−i∏
k=n−j+1

ak

xij

for all i < j, and

(αy)ii =

n−i∏
k=1

(αkyk).

Plugging everything in, the ak will all cancel, giving the desired invariance.
Dorian leaves the invariance by the upper triangular matrices and Weyl elements to the reader. Alternatively,
details can be found in his book (Section 1.5).

2.3 Siegel’s theorem for the volume of the fundamental domain

Let Γn = SL(n,Z).

Theorem 2.6 (Siegel, 1936).

Vol(Γn\hn) = n2n−1
n∏
`=2

ζ(`)

Vol(S`−1)
,

where

Vol(S`−1) =
2(
√
π)`

Γ
(
`
2

) .
The proof will require (a generalization of) the Poisson summation formula. Recall the standard Poisson
summation formula:

Proposition 2.7 (Poisson summation). Let f : R→ C be a smooth function (with some technical conditions,
i.e. exponential decay). Then ∑

n∈Z
f(n) =

∑
n∈Z

f̂(n),

where f̂(y) =
´∞
−∞ f(u)e−2πiyu du is the Fourier transform.

Proof. Define the new function G(x) =
∑
n∈Z f(x + n). Note that G(x + 1) = G(x), so we have a Fourier

expansion

G(x) =
∑
k∈Z

Ake
2πikx

where

Ak =

ˆ 1

0

G(u)e−2πiuk du .

Hence

G(x) =
∑
k∈Z

(ˆ 1

0

∑
n∈Z

f(u+ n)e−2πiuk du

)
e2πikx

=
∑
k∈Z

ˆ ∞
−∞

f(u)e−2πiu(k−x) du ,
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so we conclude that ∑
n∈Z

f(x+ n) =
∑
k

f̂(k − x).

Substituting x = 0 gives the result.

In particular, we will need a GL(2) version of Poisson summation.

Proposition 2.8 (Poisson summation for GL(2,R)). Consider a smooth, compactly supported function
f : R2/SO(2,R)→ C; i.e. f((u, v)k) = f((u, v)) for any (u, v) ∈ R2 and k ∈ K = SO(2,R). Then we have∑

(m,n)∈Z

f((m,n) · g) =
∑

(m,n)∈Z2

f̂((m,n) · (gT )−1).

Here f̂ is the (double) Fourier transform

f̂((x, y)) =

ˆ ∞
−∞

ˆ ∞
−∞

f((u, v))e−2πixue−2πiyv dudv .

Proof. Consider g ∈ SL(2,R) of the form g =

(
y1/2 xy−1/2

0 y−1/2

)
. We define

F (g) :=
∑

(m,n)∈Z2

f((m,n) · g) =
∑

(m,n)∈Z2

f(my1/2,mxy−1/2 + ny−1/2),

and for fixed g and n, define

Gg(n) :=
∑
m∈Z

f(my1/2,mxy−1/2 + ny−1/2).

By standard Poisson Summation (in n),

F (g) =
∑
n∈Z

Gg(n) =
∑
n∈Z

Ĝg(n).

Hence

F (g) =
∑

(m,n)∈Z

f̂(my1/2,mxy−1/2 + ny−1/2) =
∑

(m,n)∈Z2

ˆ ∞
−∞

f(my1/2,mxy−1/2 + uy−1/2)e−2πiun du ,

where above the Fourier transform is taken only in the n variable.
We now do the same thing in the m variable. Define

Hg(m) :=
∑
n∈Z

ˆ ∞
−∞

f(my1/2,mxy−1/2 + uy−1/2)e−2πiun du .

Poisson summation again gives that

F (g) =
∑
m∈Z

Hg(m) =
∑
m∈Z

Ĥg(m).

Hence, we can write

F (g) =
∑
m∈Z

∑
n∈Z

ˆ ∞
−∞

f(vy1/2, vxy−1/2 + uy−1/2)e−2πinue−2πimv dudv .

Making the transformation u′ = vy1/2 and v′ = vxy−1/2 + uy−1/2 finishes the proof.

We’ll get to Siegel’s proof next time.

Remark 2.9. Siegel’s proof for the volume of the fundamental domain was generalized by Langlands in the
paper The volume of the fundamental domain for some arithmetic subgroups of Chevalley groups, Proc AMS,
1965.
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3 Lecture 3 - 2/4/25

3.1 Fundamental Domains

Consider a topological space X and group G, with G acting on X. Recall that a (left) group action is a map
◦ : G×X → X such that e ◦ x = x for all x, and (g1g2) ◦ x = g1 ◦ (g2 ◦ x).

Proposition 3.1. GL(n,Z) acts on hn = GL(n,R)/(O(n,R) ·R∗). If γ ∈ GL(n,Z) and g ∈ hn, γ ◦g := γ ·g
as matrix multiplication.

Proof. This is clear.

Note that
hn = GL(n,R)/(O(n,R) · R∗) = SL(n,R)/SO(n,R).

Hence we can talk about the action of SL(n,Z) on hn = SL(n,R)/SO(n,R) (via matrix multiplication).
What is a fundamental domain for this action?
Recall that a fundamental domain for G acting on X, typically denoted G\X), has the properties

• Every x ∈ X is equivalent to some y ∈ G\X, where x = g ◦ y for some g ∈ G.

• No two points in the fundamental domain are equivalent to each other.

In the n = 2 case, we have the standard fundamental domain

SL(2,Z)\h2 =

{
z = x+ iy ∈ h2 | |x| ≤ 1

2
, |z| ≥ 1

}
.

To generalize this idea, we will consider a Siegel set:

Σ√3
2 , 12

=

{
x+ iy ∈ h2 | |x| ≤ 1

2
, y ≥

√
3

2

}
.

This set is bigger than the fundamental domain, but small enough to be a good approximation for analytic
purposes. Specifically, ⋃

γ∈SL(2,Z)

γ · Σ√3
2 , 12

= h2.

Theorem 3.2 (Siegel). The Siegel set for SL(n,Z)\hn

Σ√3
2 , 12

=

{
xy ∈ hn | |xij | ≤

1

2
, y ≥

√
3

2

}
satisfies ⋃

γ∈SL(n,Z)

γ · Σ√3
2 , 12

= hn.

The proof can be found in Dorian’s book.

3.2 Volume of fundamental domain SL(2,Z)\h2

Last time we stated

Theorem 3.3 (Siegel, 1936).

Vol(Γn\hn) = n2n−1
n∏
`=2

ζ(`)

Vol(S`−1)
,

where

Vol(S`−1) =
2(
√
π)`

Γ
(
`
2

) .
11
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The proof is inductive, so we’ll want to prove the statement for n = 2.

Proof for n = 2. Let K = O(2,R). Consider a smooth and compactly supported function f : R2/K → C.
We can then define

F (g) =
∑

(m,n)∈Z2

f((m,n) · g),

where multiplication is taken as a row vector multiplied by a matrix. Since f is right-invariant by K, we
have that

F (gk) = F (g)

for all g ∈ GL(2,R) and k ∈ K.

Claim 3.4. F (γg) = F (g) for all γ ∈ SL(2,Z).

Proof. Let γ =

(
a b
c d

)
∈ SL(2,Z). Since we want g ∈ SL(2,R), we take g =

(
1 x
0 1

)(
y1/2 0

0 y−1/2

)
. Then

F (γg) =
∑

(m,n)

f

(
(m,n)

(
a b
c d

)
g

)

=
∑

(m,n)

F

(
(am+ cn, bm+ dn)

(
1 x
0 1

)(
y1/2 0

0 y−1/2

))

=
∑
M,N

F

(
(M,N)

(
1 x
0 1

)(
y1/2 0

0 y−1/2

))
= F (g)

which proves the claim. Here there are no convergence issues because f has compact support.

Next, letting Γ = SL(2,Z), consider

ˆ
Γ\h2

F (g) dg =

ˆ
Γ\h2

F

((
1 x
0 1

)(
y1/2 0

0 y−1/2

))
dx dy

y2
.

Again, this integral converges because f is compactly supported.
Note that we can write

{(m,n) | m,n ∈ Z} = {(0, 0)} ∪
∞⋃
`=1

γ∈Γ∞\Γ

{`(0, 1)γ} ,

where Γ∞ =

{(
1 r
0 1

)
| r ∈ Z

}
. This follows because

Γ∞\Γ =

{(
∗ ∗
c d

)
| (c, d) = 1

}
.

Thus,

ˆ
Γ\h2

F (g) dg =

ˆ
Γ\h2

F (0, 0) dg +

ˆ
Γ\h2

∞∑
`=1

∑
γ∈Γ∞\Γ

f(`(0, 1)γg) dg

= F ((0, 0)) ·Vol(Γ\h2) + 2

ˆ
Γ∞\h2

∞∑
`=1

f((0, `) · g) dg ,

where the factor of 2 arises because −I2 ∈ Γ fixes h2.

12



Austin Lei

Hence

ˆ
Γ\h2

F (g) dg = F ((0, 0)) ·Vol(Γ\h2) + 2

ˆ
Γ∞\h2

∞∑
`=1

f

(
(0, `) ·

(
1 x
0 1

)(
y1/2 0

0 y−1/2

))
dx dy

y2

= F ((0, 0)) ·Vol(Γ\h2) + 2

ˆ
Γ∞\h2

∞∑
`=1

f
(

(0, `y−1/2)
) dxdy

y2

= F ((0, 0)) ·Vol(Γ\h2) + 2

ˆ 1

x=0

ˆ ∞
y=0

∞∑
`=1

f
(

(0, `y−1/2)
) dxdy

y2
.

Taking the transformations y 7→ `2y in the first line and then y → y−2 in the second line, we get

2

ˆ 1

x=0

ˆ ∞
y=0

∞∑
`=1

f
(

(0, `y−1/2)
) dxdy

y2
= 2

ˆ 1

x=0

ˆ ∞
y=0

∞∑
`=1

f
(

(0, y−1/2)
) 1

`2
dxdy

y2

= 4ζ(2)

ˆ ∞
0

f ((0, y)) y dy .

Now, we convert to polar coordinates. Since f is right invariant by k =

(
cos θ − sin θ
sin θ cos θ

)
∈ K,

f((0, y)) = f((y sin θ, y cos θ))

for any θ.
Thus we get that

4ζ(2)

ˆ ∞
y=0

f ((0, y)) y dy =
2ζ(2)

π

ˆ 2π

0

ˆ ∞
y=0

f ((y sin θ, y cos θ)) y dy dθ

=
2ζ(2)

π

ˆ
R2

f(u, v) dudv =
2ζ(2)

π
f̂((0, 0)).

Hence we have shown that
ˆ

Γ\h2

F (g) dg = f((0, 0))Vol(Γ\h2) +
2ζ(2)

π
f̂((0, 0)).

Now, consider replacing f by f̂ . By Poisson summation for GL(2,R),∑
(m,n)∈Z2

f((m,n)g) =
∑

(m,n)∈Z2

f̂((m,n)(gT )−1).

We can replace g by (gT )−1 in all of the computation above, and nothing would change. Hence, we get that

ˆ
Γ\h2

F (g) dg = f̂((0, 0))Vol(Γ\h2) +
2ζ(2)

π
f((0, 0)),

using that
̂̂
f(x) = f(−x). Subtracting the two equations and solving for the volume gives the desired

formula.

Next time, we will finish the proof for general n.

13
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4 Lecture 4 - 2/6/25

4.1 Volume of fundamental domain SL(n,Z)\hn

This time we will finish the proof of Siegel’s theorem:

Theorem 4.1 (Siegel, 1936).

Vol(Γn\hn) = n2n−1
n∏
`=2

ζ(`)

Vol(S`−1)
,

where

Vol(S`−1) =
2(
√
π)`

Γ
(
`
2

) .
We proved it for n = 2 last time. Now we will finish the proof for n > 2 inductively.
We will use the Poisson summation formula for GL(n,R):

Proposition 4.2. For a function f : Rn/Kn → C, where Kn = O(n,R), we have that∑
m∈Zn

f(m · g) =
∑
m∈Zn

f̂(m · (gT )−1).

We showed this for n = 2; it can be generalized to higher n inductively.

Proof of Siegel’s Theorem. For more details, one can check Dorian’s book, section 1.6.
Let Γn = SL(n,Z). Recall that for g ∈ hn, we write g = xy with the usual notation for x and y. We want
to this to lie in SL(n,R)/SO(n,R), so we instead consider

y =


y1y2 . . . yn−1t

y1y2 . . . yn−2t
. . .

y1t
t

 ,

where t =
(∏n−1

j=1 y
n−j
j

)−1

.

Emulating the proof for n = 2, let f : Rn/Kn → C be a smooth and compactly supported function. Again
we define

F (g) =
∑
m∈Zn

f(m · g).

Then we can show F (γg) = F (g) for all γ ∈ SL(n,Z).

Definition 4.3. The mirabolic subgroup of GL(n) is

Pn =

{(
∗

0 0 . . . 0 1

)}
Then one can check that

F (g) = f((0, . . . , 0)) +

∞∑
`=1

∑
γ∈Pn\Γn

f(` · en · γg),

where en = (0, . . . , 0, 1).
Now, we have that

ˆ
Γn\hn

F (g) dg = f((0, . . . , 0))Vol(Γn\hn) +

ˆ
Γn\hn

∞∑
`=1

∑
γ∈Pn\Γn

f(` · en · γg) dg

= f((0, . . . , 0))Vol(Γn\hn) + 2

∞∑
`=1

ˆ
Pn\hn

f(` · en · g) dg ,

14
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where the factor of 2 appears because −In ∈ Γn fixes hn, and −In ∈ Γn for n even and ∈ Ø(n,R) for n odd.
Now we can write

g =


1

1 xij
. . .

1
1




y1y2 . . . yn−1t

y1y2 . . . yn−2t
. . .

y1t
t


(
t

1
n−1 In−1

t

)(
t−

1
n−1 In−1

t

)

=


1 x1n

1 x2n

. . .
...

1 xn−1,n

1


(
g′

1

)(
t−

1
n−1 In−1

t

)

where g′ is the n− 1 by n− 1 matrix

g′ =


1 x12 x13 . . . x1,n−1

1 x23 . . . x2,n−1

. . .
. . .

...
1 xn−2,n−1

1



y1y2 . . . yn−1t

n/(n−1)

y1y2 . . . yn−2t
n/(n−1)

. . .

y1t
n/(n−1)

 ∈ hn−1

Recall that

dg =

 ∏
1≤i<j≤n

dxij

 n−1∏
k=1

y
−k(n−k)−1
k dyk ,

and we have that

dg′ =

 ∏
1≤i<j≤n−1

dxij

 n−2∏
k=1

y
−k(n−k−1)−1
k+1 dyk+1 .

Computation thus gives us that

dg = − n

n− 1
dg′

n−1∏
j=1

dxj,n

 tn
dt

t
.

Now, to apply induction, we will want to relate Pn\hn to Γn−1\hn−1.
Every p ∈ Pn is of the form

p =

(
γ b

1

)
=

(
In−1 b

1

)(
γ

1

)
with Γ ∈ SL(n− 1,Z) and b ∈ Zn−1. Moreover, every g ∈ hn is of the form

g =

(
g′ u

1

)(
t−

1
n−1 In−1

t

)
=

(
In−1 u

1

)(
g′

1

)(
t−

1
n−1 In−1

t

)
,

where

u =


u1,n

u2,n

...
un−1,n

 .

15



Austin Lei

Then

p · g =

(
In−1 b

1

)(
γ

1

)(
In−1 u

1

)(
g′

1

)(
t−

1
n−1 In−1

t

)
.

Let Un(Z) denote matrices with 1s on the diagonal, integers in the right most column, and 0s elsewhere, and
similarly for Un(R).

Lemma 4.4. Fix a γ ∈ SL(n − 1,Z). We have an action of Un(Z) on Rn−1 given by left multiplication of

Un(Z) on

(
γ

1

)
· Un(R), with fundamental domain given by


(
γ

1

)


1 u1

1 u2

. . .
...

1 un−1

1

 | 0 ≤ ui < 1


Moreover,

Un(Z)\
(
γ

1

)
Un(R) ∼= (Z\R)n−1.

Proof. One can write⋃
m∈Zn−1

(
In−1 m

1

)(
γ

1

)(
In−1 (Z\R)n−1

1

)
=

⋃
m∈Zn−1

(
γ

1

)(
In−1 γ−1m

1

)(
In−1 (Z\R)n−1

1

)
=

(
γ

1

) ⋃
m∈Zn−1

(
In−1 (Z\R)n−1 + γ−1m

1

)
=

(
γ

1

)
Un(R).

Hence, examining our expression p · g and applying the lemma, we get the decomposition

Pn\hn ∼= (SL(n− 1,Z)\hn−1)× (Z\R)n−1 × (0,∞).

Moreover, note that

f(`eng) = f

(
`en

(
g′ u

1

)(
t−

1
n−1 In−1

t

))
= f(`ten).

Thus we can write

2

∞∑
`=1

ˆ
Pn\hn

f(` · en · g) dg = 2
n

n− 1

∞∑
`=1

(ˆ
Γn−1\hn−1

dg′

)(ˆ
(Z\R)n−1

n−1∏
i=1

dxi,n

)(ˆ ∞
0

f(`ten)tn
dt

t

)
.

By induction, the first integral on the RHS is the volume Γn−1\hn−1. The second integral is 1. Thus, it
suffices to compute the third integral.
Making a transformation t→ t

` , we have that

∞∑
`=1

ˆ ∞
0

f(`ten)tn
dt

t
= ζ(n)

ˆ ∞
0

f(`ten)tn
dt

t
.

Lemma 4.5. ˆ ∞
0

f(`ten)tn
dt

t
=
f̂((0, . . . , 0))

Vol(Sn−1)
.
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Proof. Use the n dimensional spherical coordinates

x1 = t(sin θn−1) · · · (sin θ2)(sin θ1)

x2 = t(sin θn−1) · · · (sin θ2)(cos θ1)

...

xn−1 = t(sin θn−1)(cos θn−2)

xn = t cos θn−1

In particular, note that x2
1 + · · ·+ x2

n = 1. We have the invariant measure on Sn−1

dθ =
∏

1≤j<n

(sin θj)
j−1 dj ,

so
dx1 · · · dxn = tn−1 dtdθ .

This measure is invariant under rotations, so

f((0, . . . , 0, t)) =
1

Vol(Sn−1)

ˆ
Sn−1

f(x1, . . . , xn)) dθ ,

and thus
ˆ ∞

0

f((0, . . . , 0, t))tn
dt

t
=

1

Vol(Sn−1)

ˆ
Rn
f(x1, . . . , xn) dx1 . . . dxn = f̂((0, . . . , 0)),

where we apply polar coordinates.

This gives the formula

ˆ
Γn\hn

F (g) dg = f((0, . . . , 0))Vol(Γn\hn) + 2
n

n− 1
· f̂((0, . . . , 0))

Vol(Sn−1)
·Vol(Γn−1\hn−1).

Now, we repeat the same process replacing f̂ and f , using the Poisson summation formula. Since the
computation remains the same with (gT )−1 in place of g, we get that

ˆ
Γn\hn

F (g) dg = f̂((0, . . . , 0))Vol(Γn\hn) + 2
n

n− 1
· f((0, . . . , 0))

Vol(Sn−1)
·Vol(Γn−1\hn−1).

Choosing f such that f((0, . . . , 0)) 6= f̂((0, . . . , 0)) and manipulating the two equations gives the inductive
formula

Vol(Γn\hn) = 2
n

n− 1
· 1

Vol(Sn−1)
·Vol(Γn−1\hn−1)

which finishes the theorem.

Next time, we start the theory of automorphic forms.
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5 Lecture 5 - 2/11/25

Today, we will briefly review the theory of GL(2) automorphic forms using Langlands parameters. A reference
for more details is Dorian’s Chapter 3, but be aware that everything needs to be converted from spectral to
Langlands parameters.

5.1 Laplacian for GL(2)

Recall that h2 =

{(
1 x
0 1

)(
y 0
0 1

)
| x ∈ R, y > 0

}
.

Definition 5.1. We have the (hyperbolic) Laplacian

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

For the real line, the Laplacian is d2

dx2 , which is invariant for x 7→ x+1. Analagously, the hyperbolic Laplacian
behaves similarly.

Proposition 5.2. ∆ is invariant under SL(2,R): for all γ ∈ SL(2,R), ∆g = ∆(γg).

We will discuss a proof later involving Lie theory, but we’ll start with a classical proof, which doesn’t
generalize to higher rank, since for higher rank we no longer have the complex structure.

Proof. Recall that we have
d

dz
=

1

2

(
∂

∂x
− i ∂

∂y

)
such that ∂

∂z = 1, and
d

dz
=

1

2

(
∂

∂x
+ i

∂

∂y

)
that kills all holomorphic functions.
Note that we can write

∆ = 4 Im(z)
d

dz

d

dz
.

For any

(
a b
c d

)
= SL(2,R), we have that

d

daz+bcz+d

= (cz + d)2 d

dz

and
d

daz+bcz+d

= (cz + d)2 d

dz
,

and since

Im

(
az + b

cz + d

)
=

1

|cz + d|2
,

∆ remains invariant.

Remark 5.3. ∆ being SL(2,Z)-invariant implies that ∆f(γg) = ∆f(g) for any γ ∈ SL(2,Z). This is good;
we will want our operator to send automorphic functions to automorphic functions.
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5.2 Maass forms for SL(2,Z)
We are now equipped to discussed automorphic forms on GL(2).

Definition 5.4. A Maass form for SL(2,Z) is a smooth function f : h2 → C such that

• Automorphic condition: f(γg) = f(g) for all γ ∈ SL(2,Z) and g ∈ GL(2,R).

• ∆f = λf for some λ ∈ C.

• Growth condition: |f(g)| � y−B for some B > 0 and y →∞.

Remark 5.5. The only holomorphic function of this type are the constant functions. However, there exist
non-holomorphic examples - namely the Maass forms.

Remark 5.6. We in fact can assume that λ ∈ R+, rather than in C. To see this, we have an positive
definite inner product for Maass forms

〈f1, f2〉 =

ˆ
SL(2,Z)\h2

f1(g)f2(g)
dxdy

y2
.

By applying Green’s theorem, one can show that

〈∆f, f〉 = 〈f,∆f〉 ,

so for f a Maass form, we conclude that the λ are real and positive.

In the previous definition, we say that λ is the spectral parameter of the Maass form f . Its corresponding
Langlands parameter is α = (α0,−α0), where 1

4 − α
2
0 = λ.

In general, on GL(n), a Langlands parameter is a vector of the form

(α1, . . . , αn) ∈ Cn

where α1 + · · · + αn = 0. We will be able to associate a Langlands parameter to every Maass form for
SL(n,Z).
We now give a broad survey of results in the GL(2) theory.

Remark 5.7. It is conjectured that there is only one Maass form (up to constant multiple) for each eigenvalue
λ; the best known upper bound is

√
λ.

Remark 5.8. It is difficult to construct SL(2,Z) Maass forms - the proof of existence was first shown using
the Selberg trace formula. Moreover, it also shows that the set of Maass forms is countable.

Conjecture 5.9 (Selberg Eigenvalue Conjecture). λ ≥ 1
4 .

Remark 5.10. This bound is tight - one can construct Maass forms of eigenvalue 1
4 using the Gelbart-Jacquet

lift from GL(2) to GL(3).
The conjecture can be proven when the fundamental domain is a triangle, so it has been proved for SL(2,Z).
However, it is not proved for congruence subgroups of SL(2,Z), or for higher rank. Weaker lower bounds
have been shown, but getting the optimal 1

4 bound would improve error terms in applications.

Remark 5.11. Due to a result by Luo-Rudnick-Sarnak, the Ramanujan conjecture on the Fourier coefficients
of Maass forms should be seen as roughly the same difficulty as the Selberg Eigenvalue conjecture from the
adelic/representation point of view.
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5.3 Fourier expansion of GL(2) Maass forms

Take g =

(
y x
0 1

)
∈ GL(2,R), and let f be a Maass form with Langlands parameter α = (α0,−α0). Note

that

f(g) = f

((
1 1
0 1

)
g

)
= f

((
1 x+ 1
0 1

)(
y 0
0 1

))
,

so we have periodicity as x 7→ x+ 1. This gives a Fourier expansion

f(g) =
∑
n 6=0

ˆ 1

0

f

((
1 u
0 1

)
g

)
e−2πinu du .

Note that there is no constant term because of the polynomial decay of the Maass form. We can define

Wn(g) =

ˆ 1

0

f

((
1 u
0 1

)
g

)
e−2πinu du .

We note that this satsifies some nice properties:

• ∆Wn(g) =
(

1
4 − α

2
0

)
Wn(g)

• Wn

((
1 v
0 1

)
g

)
= e2πinvWn(g).

Moreover, Wn inherits the growth properties of the Maass form.

Definition 5.12. We say that any (smooth) function satsifying these three conditions is a Whittaker
function with Langlands parameters α.

In GL(2), we can write out these Whittaker functions explictly in terms of Bessel functions.
First, note that by the second property above, we can rewrite our Fourier expansion as

f(g) =
∑
n 6=0

ˆ 1

0

f

((
1 u
0 1

)
g

)
e−2πinu du

=
∑
n 6=0

ˆ 1

0

f

((
1 u+ x
0 1

)(
y 0
0 1

))
e−2πinu du

=
∑
n 6=0

(ˆ 1

0

f

((
1 u
0 1

)(
y 0
0 1

))
e−2πinu du

)
e2πinx.

Let

An(y) :=

ˆ 1

0

f

((
1 u
0 1

)(
y 0
0 1

))
e−2πinu du .

Then our Fourier expansion can be written as

f(g) =
∑
n6=0

An(y)e2πinx,

where An(y)e2πinx = Wn(g).
Let’s examine the differential condition. We know that

∆f(g) =
∑
n 6=0

∆An(y)e2πinx

=
∑
n 6=0

−y2

(
∂2

∂x2
+

∂2

∂y2

)(
An(y)e2πinx

)
=
∑
n 6=0

−y2
(
A′′n(y)− 4π2n2An(y)

)
e2πinx.
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We also have that

∆f(g) =

(
1

4
− α2

)
f(g).

Hence for each n we get the differential equation(
1

4
− α2

)
An(y) = −y2

(
A′′n(y)− 4π2n2An(y)

)
Because the Maass form (and hence the Whittaker function) has polynomial decay, the second order dif-
ferential equation has a unique solution (up to constant) in terms of a Bessel function, giving the Fourier
expansion

f(g) =
∑
n 6=0

a(n)
√

2πyKα(2π|n|y)e2πinx,

where

Kα(y) =
1

2

ˆ ∞
0

e−
1
2y(u+1/u)uα

du

u

is the Bessel function. We remark that this function has exponential decay in y.
To the Fourier expansion we associate the L-function

Lf (s) =

∞∑
n=1

a(n)

ns
.

This L-function will have a functional equation and Euler product.

5.4 Eisenstein series for GL(2)

We briefly discuss the theory of Eisenstein series for GL(2).
We have the classical construction of the Eisenstein series

E(z, s) =
∑

γ∈Γ∞\SL(2,Z)

(Im γz)
s

where Γ∞ =

{(
1 m
0 1

)
| m ∈ Z

}
.

We call Im(z)s = ys the power function - this will generalize for GL(n).
The Eisenstein series satsifies all the properties of a Maass forms except for the growth condition; instead,
we have polynomial growth: |E(x+ iy, s)| � yB(s) as y →∞ with B(s) > 0.
By normalizing by the proper gamma factors, and letting E∗(z, s) be the normalized Eisenstein series, we
get the functional equation

E∗(z, s) = E∗(z, 1− s).

Definition 5.13. We say that an automorphic form (i.e. Eisenstein series or Maass form) f for SL(2,Z)
has spectral parameters λ = s(1− s) if f has the same eigenvalues as ys under ∆.

We can also define the Eisenstein series in terms of Langlands parameters. Letting α = (α0,−α0), we have

the corresponding power function y
1
2 +α0 and thus corresponding Eisenstein series

E(α, g) :=
∑

γ∈Γ∞\SL(2,Z)

(Im γz)
1
2 +α0 .

With the correct normalization by Gamma factors again, this gives the functional equation

E∗((α0,−α0), g) = E∗((−α0, α0), g),

in other words, we can replace α0 with −α0 in the definition of the Eisenstein series and everything is the
same.
To summarize, we reiterate the definition of a Maass form with Langlands parameters.
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Definition 5.14. A Maass form with Langlands parameters α = (α0,−α0) is a smooth function
f : h2 → C such that

• f(γg) = f(g) for all γ ∈ SL(2,Z) and g ∈ GL(2,R)

• ∆f = λf , where λ is the eigenvalue of the power function y
1
2 +α0 under ∆.

• |f(g)| � y−B for some B > 0 and y →∞.

This will be the definition of Maass form we use going forward.

5.5 Invariant differential operators on hn

We want to generalize all of the above theory to GL(n), so we’ll first need to describe the invariant differential
operators on GL(n).
Recall the Iwasawa decomposition g = xy. An invariant differential operator will be some polynomial in
∂

∂xij
and ∂

∂yk
. To describe precisely what these are, we will turn to Lie theory.

Definition 5.15. A Lie algebra L over a field K is a vector space over K equipped with the Lie bracket,
a bilinear map [·, ·] : L× L→ L such that for all a, b, c ∈ L and α, β ∈ K,

• [a, αb+ γc] = α[a, b] + γ[a, c]

• [a, a] = 0

• [a, b] = −[b, a].

• [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Example 5.16. We have gl(n,R), the Lie algebra of GL(n,R), is the additive vector space of all n × n
matrices in R, with Lie bracket [a, b] = a · b− b · a.

Now we can construct the differential operators. Let α ∈ gl(n,R). Define

Dαf(g) :=
∂

∂t
F (g exp(tα))|t=0,

where exp(tα) =
∑∞
`=0

1
`! (tα)`.

Next time, we will show that the ring generated by all the Dα is the universal enveloping algebra of gl(n,R),
and construct differential operators using this.
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6 Lecture 6 - 2/13/25

6.1 Lie theory on gl(n,R)
We’ll want to use the theory of Lie algebras to define invariant differential operators.

Definition 6.1. An associative algebra over a field K is a vector space A over K such that

• we have an associative product · : A×A→ A such that for all a, b, c ∈ A and α, β, γ ∈ K,

a · (βb+ γc) = β(a · b) + γ(a · c),

and
(αa+ βb) · c = α(a · c) + β(b · c).

Definition 6.2. A Lie algebra is a vector space L over a field K with a Lie bracket [·, ·] : L×L→ L such
that for all a, b, c ∈ L and β, γ ∈ K

• [a, αb+ γc] = α[a, b] + γ[a, c]

• [a, a] = 0

• [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Given an associative algebra over K, we can construct a Lie algebra by defining [a, b] = a ◦ b − b ◦ a. One
can check that this satisfies the definition of a Lie algebra.

Definition 6.3. A derivation on an associative algebra A is a K-linear map D : A → A such that
D(xy) = (Dx) · y + x · (Dy) for all x, y ∈ A.

Definition 6.4. The derivations on an associative algebra form a Lie algebra, with Lie bracket

[D,D′] = D ◦D′ −D′ ◦D,

where ◦ is composition.

Proof. To prove that this is a Lie algebra, we need to show

[D,D′](xy) = ([D,D′]x) · y + x · ([D,D′]y).

We have that

(D ◦D′)(xy) = D(D′(xy))

= D((D′x) · y + x · (D′y))

= D((D′x) · y) +D(x · (D′y))

= (D ◦D′)x · y + (D′x) · (Dy) + (Dx) · (D′y) + x · (D′ ◦D)y.

Similarly,
(D′ ◦D)(xy) = (D′ ◦D)x · y + (Dx) · (D′y) + (D′x) · (Dy) + x · (D ◦D′)y,

and subtract the two gives the desired result.

Given an associative algebra A, we can construct an associated Lie algebra L(A) (by the a ◦ b − b ◦ a
construction). It is also possible to start with L(A) and go back and recover the associative algebra (the
universal enveloping algebra). This can be constructed in general with universal properties, but we will
only construct it for the specific case we care about.
We start with GL(n,R), a Lie group. Its corresponding Lie algebra is gl(n,R), the vector space of n × n
matrices over R with Lie bracket

[a, b] = a · b− b · a,
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where the · denotes matrix multiplication. Motivated by the previous discussion, we want to construct a
derivative on gl(n,R).
Consider a smooth function F : GL(n,R)→ C, and consider any α ∈ GL(n,R). Then we define

DαF (g) :=
∂

∂t
F (g · etα)|t=0,

where t is a real variable and

etα =

∞∑
`=0

(tα)`

`!

is the matrix exponential. Since we only consider the first order partial derivative, this is equivalent to

DαF (g) =
∂

∂t
F (g + tgα)|t=0.

Example 6.5. Let g =

(
a b
c d

)
∈ gl(2,R), let F (g) = F

((
a b
c d

))
= a+2b+c2−3d, and let α =

(
0 1
0 0

)
.

Then

DαF

((
a b
c d

))
=

∂

∂t
F

((
a b
c d

)
+ t

(
a b
c d

)(
0 1
0 0

))
|t=0

=
∂

∂t
F

((
a b+ at
c d+ ct

))
|t=0

= 2a− 3c.

Proposition 6.6 (Properties of Dα).

• Dα+β = Dα +Dβ

• Dα ◦Dβ −Dβ ◦Dα = D[α,β]

Proof. Treating F as a function of n2 variables (n × n variables), we can apply the standard multivariate
chain rule

DαF (g) =
∂

∂t

 n∑
i=1

n∑
j=1

(g + tgα)ij ·
∂

∂gij
F (g + tgα)

 |t=0 =

n∑
i=1

n∑
j=1

(gα)ij ·
∂

∂gij
F (g),

where (g + tgα)ij denotes the i, jth element, and then we get the first equation.
Applying a similar computation for Dα ◦Dβ −Dβ ◦Dα gives the desired result.

With these properties, we have constructed the universal enveloping algebra of gl(n,R), denoted U(gl(n,R)),
the algebra of all of these operators Dα. (We still need to show that the kernel of the map α 7→ Dα is trivial;
see Goldfeld-Hundley Lemma 4.5.4.)

6.2 Center of the universal enveloping algebra of gl(n,R)
We want to find all elements D ∈ U(gl(n,R)) that lie in the center ZU(gl(n,R)); i.e. [D,D′] = [D′, D] for
all D′ ∈ U(gl(n,R)). Why do we care?

Proposition 6.7. Let F : SL(n,Z)\hn → C an automorphic form; i.e.

f(γgkz) = f(g)

for all γ ∈ SL(n,Z), k ∈ K = O(n,R), z ∈ Zn (diagonal elements with the same element along the diagonal).
If D ∈ ZU(gl(n,R)), then

(Df)(γgkz) = Df(g)

for all γ, k, z; i.e. D will send automorphic forms to automorphic forms.
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Proof. For all D ∈ U(gl(n,R)), we have that

(DF )(γgz) = DF (g).

In particular,

(DαF )(γgz) =
∂

∂t
F (γgzetα)|t=0 =

∂

∂t
F (getαz)|t=0 =

∂

∂t
F (getα)|t=0 = DF (g),

using that z commutes with everything in GL(n,R).
It remains to prove that (DF )(gk) = DF (g) for k ∈ K = O(n,R). Since −In ∈ Zn, it suffices to prove the
condition for k ∈ SO(n,R).
Let h ∈ gl(n,R), such that h+ hT = 0; i.e. h ∈ so(n,R). For u ∈ R, define

φ(u) := D(f(geuh))− (Df)(geuh).

Note that φ(0) = 0. We want to show that φ ≡ 0; it is sufficient to show that φ′(u) = 0 for all u.
We have that

φ′(u) =
∂

∂t
φ(u+ t)|t=0

=
∂

∂t

(
D(f(ge(u+t)h))− (Df)(ge(u+t)h)

)
|t=0

=
∂

∂t

(
D(f(geuheth))− (Df)(geuheth)

)
|t=0

= (D(Dhf))(geuh)− (Dh(Df))(geuh) = 0,

using that D ◦Dh = Dh ◦D since D is in the center.
Hence φ(u) = 0 for all u ∈ U . Moreover, note that euh ∈ SO(n,R). Hence, we conclude that DF is invariant
under SO(n,R), so we are done.

Next time, we will construct Casimir elements, which lie in the center of the universal enveloping algebra.
The construction will involve considering Dij := DEij , where Eij is a 1 at position i, j and 0 elsewhere. This
construction for GL(2) will recover the Laplacian.
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7 Lecture 7 - 2/18/25

7.1 Casimir Operators on GL(n,R)
Last time, we talked about gl(n,R), the Lie algebra of GL(n,R), which is the space of all n×n matrices over
R with Lie bracket [α, β] = αβ − βα. Associated to gl(n,R) is its universal enveloping algebra U(gl(n,R)).
Concretely, U(gl(n,R)) is the algebra generated by differential operators

DαF (g) =
∂

∂t
F (getα)

∣∣∣∣
t=0

=
∂

∂t
F (g + tgα)

∣∣∣∣
t=0

for F : GL(n,R)→ C.
We are interested in the center of the universal enveloping algebra ZU(gl(n,R)). In particular, we’d like to
explicitly construct elements of the universal enveloping algebra.
For 1 ≤ i, j ≤ n, let Ei,j be the n× n matrix with 1 at i, j and 0 elsewhere.

Lemma 7.1. [Ei,j , Ei′,j′ ] = δi′,jEi,j′ − δi,j′Ei′,j, where δi,j is 1 if i = j and 0 otherwise.

The proof is simple and hence omitted.
For each i, j, define Di,j := DEi,j .

Definition 7.2 (Casimir Differential Operator). For each 2 ≤ m ≤ n, a Casimir differential operator
is of the form

D =

n∑
i1=1

n∑
i2=1

· · ·
n∑

im=1

Di1,i2Di2,i3 . . . Dim,i1 .

Theorem 7.3. For any Casimir differential operator, D ∈ ZU(gl(n,R)).

Proof. We prove the theorem for m = 2. The theorem generalizes for higher m.
It suffices to show that for all 1 ≤ r, s ≤ n,

Dr,sD = DDr,s,

or equivalently [Dr,s, D] = 0.

Lemma 7.4. For any D ∈ U(gl(n,R)) and α, β ∈ gl(n,R),

[Dα, DβD] = [Dα, Dβ ]D +Dβ [Dα, D].

Proof.

[Dα, DβD] = DαDβD −DβDDα

= DαDβD −DβDαD −DβDDα +DβDαD

= [Dα, Dβ ]D +Dβ [Dα, D].

Now, we have D is a Casimir differential operator. Then by applying the Lemma,

[Dr,s, D] =

n∑
i1=1

n∑
i2=1

[Dr,s, Di1,i2Di2,i1 ]

=

n∑
i1=1

n∑
i2=1

[Dr,s, Di1,i2 ]Di2,i1 +Di1,i2 [Dr,s, Di2,i1 ]

=

n∑
i1=1

n∑
i2=1

(δi1,sDr,i2 − δr,i2Di1,s)Di2,i1 +Di1,i2 (δi2,sDr,i1 − δr,i1Di2,s)

=

n∑
i2=1

Dr,i2Di2,s −
n∑

i1=1

Di1,sDr,i1 +

n∑
i1=1

Di1,sDr,i1 −
n∑

i2=1

Dr,i2Di2,s

= 0.
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Now we try to compute the Casimir operator for GL(2).

Lemma 7.5. Let g =

(
a b
c d

)
∈ GL(2,R). Then

g =

(
bc−ad
c2+d2

ac+bd
c2+d2

0 1

)
(mod O(2,R) · R∗).

In the GL(2) case, we have that

D = D1,1D1,1 +D1,2D2,1 +D2,1D1,2 +D2,2D2,2.

We can compute that

D1,1F (g) =
∂

∂t
F

((
y x
0 1

)
+ t

(
y x
0 1

)(
1 0
0 0

)) ∣∣∣∣
t=0

=
∂

∂t
F

((
y(1 + t) x

0 1

)) ∣∣∣∣
t=0

= y
∂

∂y
F

((
y x
0 1

))
.

However, note that D1,1D1,1 is not simply composing D1,1 twice, because D1,1 may not be invariant under
O(n,R) (as it does not lie in the center). Thus we have to actually compute it explicitly.

D1,1D1,1F (g) =
∂

∂t1

∂

∂t2
F

((
y x
0 1

)(
1 + t1 0

0 1

)(
1 + t2 0

0 1

)) ∣∣∣∣
t1=0,t2=0

=
∂

∂t1

∂

∂t2
F

((
y(1 + t1)(1 + t2) x

0 1

)) ∣∣∣∣
t1=0,t2=0

=

(
y
∂

∂y
+ y2 ∂

∂y2

)
F (g).

Similarly, we can compute that

D2,1F (g) =
∂

∂t
F

((
y x
0 1

)
+ t

(
y x
0 1

)(
0 0
1 0

)) ∣∣∣∣
t=0

=
∂

∂t
F

((
y + tx x
t 1

)) ∣∣∣∣
t=0

=
∂

∂t
F

((
y

t2+1
xt2+yt+x
t2+1

0 1

))∣∣∣∣
t=0

= y
∂

∂x
F (g) ,

where we transform via the Iwasawa decomposition, and

D2,1D1,2F (g) =
∂

∂t1

∂

∂t2
F

((
y x
0 1

)(
1 0
t1 1

)(
1 t2
0 1

)) ∣∣∣∣
t1=0,t2=0

=

(
−2y

∂

∂y
+ y2 ∂

2

∂x2

)
F (g).

Similar computations can be done to find that

D1,2D2,1F (g) = y
∂2

∂x2
F (g)

and

D2,2D2,2F (g) =

(
y
∂

∂y
+ y2 ∂

2

∂y2

)
F (g).

Adding everything together gives −∆, which thus lies in the center, as desired.
Finally, it is enough to consider these Casimir operators:
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Theorem 7.6 (Capelli, 1890). Let n ≥ 2. Then ZU(gl(n,R)) consists of all polynomials in the Casimir
operators and DIn ; it is a polynomial algebra of rank n in R. Moreover, DIn annihilates all smooth functions
F : GL(n,R)→ C invariant under the center.

In particular, note that if F is invariant under the center, then

DInF (g) =
∂

∂t
F (g + tgIn)

∣∣∣∣
t=0

=
∂

∂t
F (g)

∣∣∣∣
t=0

= 0.

For GL(3), there are 2 Casimir operators, which one can find written out explicitly in Dorian’s book (Section
6.1).

7.2 Eigenfunctions of ZU(gl(n,R))
Remember that for an automorphic function, we want it to be an eigenfunction of all of theGL(n,R)-invariant
differential operators. Do these eigenfunctions even exist in general?
In the n = 2, we had that ys was an eigenfunction. Analogously, we will construct a power function.

Definition 7.7 (Power function on hn). The power function I(g, α), where g = xy ∈ hn, is defined (formally)
to be

I(g, α) := yα,

where α = (α1, . . . , αn) ∈ Cn is a Langlands parameter (i.e. α1 + · · ·+ αn = 0.)

Supposing that y =


Y1 0

Y2

. . .

0 Yn

, we define

yα :=

n∏
i=1

Y αii .

Note that for this definition to be well-defined, we need that I(xy, α) = I(y, α) and I(gkz, α) = I(y, α), for
any upper triangular matrix g, k ∈ Kn = O(n,R), and z ∈ Zn (the center). For invariance by the center to
hold, we need that

∑
i αi = 0.

Definition 7.8 (Maass form for SL(n,Z)). A smooth function F : hn → C is a Maass form if

• F (γg) = F (g) for all γ ∈ SL(n,Z) and g ∈ hn.

• |F (g)| � |y1y2 . . . yn−1|−B for some B > 0, where g = xy.

• DF = λDF for all D ∈ ZU(gl(n,R)). In particular, the λD should be the same as the eigenvalue for
I(g, α + ρ), where ρ = (ρ1, . . . , ρn), with ρi = n+1

2 − i. In this case, we say that the Maass form has
Langlands parameters α.

The λD is called the Harish-Chandra character.

Remark 7.9. ρ is half the sum of the positive roots in root system language.

Example 7.10. For SL(2,Z), α = (α0,−α0) ∈ C2 and ρ =
(

1
2 ,−

1
2

)
. Then

I(g, α+ ρ) = yα0+ 1
2 ,

and

∆I(g, α+ ρ) =

(
1

4
− α2

0

)
I(g, α+ ρ).

Selberg’s eigenvalue conjecture is precisely that α0 ∈ iR.

We will show next time the power function is actually an eigenfunction of all the differential operators, and
then use the power functions to construct Eisenstein series (giving an example of an automorphic form).
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8 Lecture 8 - 2/20/25

8.1 Power function is an eigenfunction of ZU(gl(n,R))
Last time, we studied the ZU(gl(n,R)), and constructed the Casimir elements. We then constructed the

power function on hn; for g =


Y1 ∗

Y2

. . .

Yn

 and Langlands parameter α = (α1, . . . , αn), we have

that

I(g, α) = yα :=

n∏
i=1

Y αii .

Proposition 8.1. DI(g, α) = λDI(g, α) for all D ∈ ZU(gl(n,R)), where λD ∈ C.

Proof. We again only prove for m = 2; the proof generalizes.
If u is a unipotent matrix, then I(ug, α) = I(g, α), as u only affects x within g = xy. Hence it suffices to
consider the y component.
We have that

Di,iI(g, α) =
∂

∂t
I(y + tyEi,i, α)

∣∣∣∣
t=0

.

In particular, note that

y + tyEi,i =



Y1

Y2

. . .

Yi(1 + t)
. . .

Yn


,

so

Di,iI(g, α) =
∂

∂t
Y α1

1 . . . (Yi(1 + t))αi . . . Y αnn

∣∣∣∣
t=0

= αiI(y, α).

Moreover, for any `th power, one can show that

Di,iI(g, α) = α`iI(g, α).

Next, we consider Di,jI(g, α). If i < j, then position (i, j) occurs above the diagonal, so

Di,jI(g, α) =
∂

∂t
I(y + tyEi,j , α)

∣∣∣∣
t=0

=
∂

∂t
I(y, α)

∣∣∣∣
t=0

= 0,

as the t occurs above the diagonal, so it does not affect the y values (can be factored out with the unipotent
part x).
It will suffice to only consider i ≤ j; see section 9.1 for more details.

Here we have a brief aside for Maass forms on SL(n,Z).
Let F be a Maass form for SL(n,Z). We have that DF = λDF , where λD is the same as the eigenvalue of
DI(g, α+ ρ) = λDI(g, α+ ρ).

Theorem 8.2 (Terras 1988, S. Miller). Let F be a Maass form for SL(n,Z) with Langlands parameter
α = (α1, . . . , αn), and let ∆ be the Laplacian (the Casimir operator with m = 2). Then

λ∆ =
n3 − n

24
− 1

2

n∑
i=1

α2
i .
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Example 8.3. When n = 2, α = (β,−β). Then

λ∆ =
1

4
− β2,

which matches what we knew previously.

We know that the Maass form are countable (by spectral theory on a Hilbert space), and we can order them
by λ∆. It is conjectured that for SL(n,Z), given a specific choice of λ∆, there is only one Maass form (up to
constant multiple) with eigenvalue λ∆.

8.2 Borel Eisenstein series

Let B ⊆ GL(n,R) be the subset the set of upper triangular matrices in GL(n,R). Let Γ = SL(n,Z), and
ΓB = Γ ∩B(Z) (upper triangular matrices with elements in Z). Then we define the Borel Eisenstein series

EB(g, α) :=
∑

γ∈ΓB\Γ

I(γg, α+ ρ),

where ρ = (ρ1, . . . , ρn), with ρi = n+1
2 − i. (The choice of ρ is to simplify the functional equation later.)

Proposition 8.4. For Re(αi) sufficiently large for all 1 ≤ i ≤ n − 1, EB(g, δ) converges absolutely and
uniformly on compact subsets of hn.

Proof. Assume WLOG that all the αi are real. We know that a fundamental domain for Γ\hn is contained
in

Σ√3
2 , 12

=

{
xy | |x| ≤ 1

2
, y >

√
3

2

}
.

It is enough to show that for any g0 ∈ hn and small compact subset Cg0
containing g0 that

ˆ
Cg0

|E(g, α)|dg � 1.

It is enough to prove that ˆ
Cg0

∑
γ∈ΓB\Γ

|I(γg, α)|dg � 1.

Note that there exist only finitely many γ ∈ ΓB\Γ such that γg0 ∈ Σ√3
2 , 12

. Hence there exists a very large

constant A such that γg0 6∈ ΣA, 12 . Hence, we can bound the RHS by

ˆ 1

0

. . .

ˆ 1

0

ˆ A

0

. . .

ˆ A

0

Y α dg ,

which is constant (uniformly in g0), as desired.

8.3 Parabolic Subgroups of GL(n,R)
Consider any partition of n = n1 + · · ·+ nr, with 1 ≤ ni ≤ n. We define the parabolic subgroup

P = Pn1,n2,...,nr :=




GL(n1) ∗
GL(n2)

. . .

GL(nr)


 .
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We also have the unipotent subgroup

NP :=



In1

∗
In2

. . .

Inr


 .

The P factors as a product of the unipotent subgroup and the Levi subgroup

LP =




GL(n1) 0
GL(n2)

. . .

GL(nr)


 .

In particular, P = NPLP . Here we can think of the NP as the x and LP as the y in the typical Iwasawa
decomposition g = xy.

Example 8.5. Note that the Borel subgroup corresponds the partition n = 1 + 1 + · · ·+ 1.

Langlands was able to define Eisenstein series on parabolic subgroups. The idea will be to take in Maass
forms on each of the GL(ni) to induce the Eisenstein series.

8.4 Power Function on Pn1,...,nr

Consider any g ∈ P, with

g =


m1 ∗

m2

. . .

mr

 ,

where each mi ∈ GL(ni,R).

Definition 8.6. Let (s1, s2, . . . , sr) ∈ Cr, with
∑r
i=1 nisi = 0. Then we define the power function | · |sP :

P → C such that

|g|sP :=

r∏
i=1

|det(mi)|si .

Example 8.7. For n = 2, g =

(
m1 ∗

m2

)
for m1,m2 ∈ R. Letting s = (s1, s2) for s1 + s2 = 0, we have

that
|g|sP1,1

= |m1|s1 · |m2|s2 .

Proposition 8.8 (Properties of the power function).

• |ug|sP = |g|sP for any u ∈ Np.

• |gk|sP = |g|sP for k with k1, . . . , kr along the diagonal, where ki ∈ O(ni,R).

• Let z ∈ Z(GL(n,R)). Then
|gz|sP = |g|sP .

This is where the
∑r
i=1 nisi = 0 is used.

Next time we will construct Eisenstein series on the parabolic subgroups using these power functions.
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9 Lecture 9 - 2/25/25

9.1 Power function is an eigenfunction of ZU(gl(n,R))
Last time, we talked about the proof that the GL(n,R) power function is an eigenfunction of all the GL(n,R)
left-invariant differential operators, but the proof was incomplete. We complete the proof here.

Proof. Consider a Lie subgroup G ⊆ GL(n,R). Then we can construct a corresponding Lie algebra

Lie(G) = {α ∈M(n,R) | eαu ∈ G∀u ∈ R} .

There are two interesting subgroups coming from the Iwasawa decomposition. One of them is the Borel
subgroup B ⊆ GL(n,R) of upper triangular matrices. The corresponding Lie algebra b is all upper triangular
n×n matrices with coefficients in R. The other subgroup is K = O(n,R). This has corresponding Lie algebra
k of skew-symmetric matrices; i.e. n× n matrices α such that α+ αT = 0.
On GL(n,R), we have the Iwasawa decomposition GL(n,R) = B · K, so on the Lie algebras we have
decomposition

M(n,R) = gl(n,R) = b⊕ k.

Proposition 9.1. Let D ∈ U(gl(n,R)). Then there exists D∗ ∈ U(b) such that the action of D on a Maass
form F : hn → C is the same as the action of D∗ on F .

Proof. Follows from the Iwasawa decomposition. Consider α ∈ Mn(R), decomposed into Iwasawa form
α = β + κ. Then

DαF (g) =
∂

∂t
F (getα)

∣∣∣∣
t=0

=
∂

∂t
F (getβ)

∣∣∣∣
t=0

= DβF (g),

using that etκ ∈ K and that F is right invariant by K. This applies for all Dα, and hence for U(gl(n,R)).

Thus, every D ∈ ZU(gl(n,R)) can be expressed as the composition of Dβ , with β ∈ b; i.e. the β are upper
triangular matrices. Hence, we can write every D as a sum of compositions of Di,j , with i < j. In this case,
the computation Di,j did not involve any rotations by O(n,R), so the composition of the Di,j in this case is
well-defined (as a function on hn as a coset, not on GL(n,R)/(O(n,R) × R∗) as a quotient). Our previous
computations then show that the power function will be an eigenfunction, as desired.

9.2 Langlands Eisenstein series for SL(n,Z)
Recall that given a partition n = n1 + · · ·+ nr, the associated parabolic subgroup is

Pn1,...,nr :=




GL(n1) ∗
GL(n2)

. . .

GL(nr)


 ⊆ GL(n,R).

Given s = (s1, . . . , sr) ∈ Cr such that
∑r
i=1 nisi = 0, and

g =


m1(g) ∗

m2(g)
. . .

mr(g)

 ∈ Pn1,...,nr ,

with mi(g) ∈ GL(ni,R), we define the power function

|g|sPn1,...,nr
=

r∏
i=1

|det(mi)|si .
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Remark 9.2. In the case of the Borel subgroup n = 1 + 1 + · · · + 1, this agrees with the previous power
function.

For each GL(ni), let φi : hni → C be a Maass form, invariant by SL(ni,Z). For GL(1), we make the
convention that φi = 1.

Definition 9.3. We have the induced Maass form

Φ(g) :=

r∏
i=1

φi(mi(g)).

Remark 9.4. This will lead to the concept of parabolic induction.

Note that Φ(ugkz) = Φ(g) for all g ∈ Pn1,...,nr . u ∈ NP =



In1

∗
In2

. . .

Inr


, k ∈ K =



O(n1,R)

O(n2,R)
. . .

O(nr,R)


, and by z ∈ Z.

Definition 9.5. Given parabolic subgroup P = Pn1,...,nr and induced Maass form Φ, we have the Langlands
Eisenstein series

EP,Φ(g, s) :=
∑

γ∈(Γ∩P)\Γ

Φ(γg)|γg|s+ρP ,

where ρ(j) =
n−nj

2 − n1 − n2 − · · · − nj−1.

For today, we’ll just consider some examples.

Example 9.6. Let’s consider the case of the partition 2 = 1 + 1. We have

• s = (s1, s2), with s1 + s2 = 0.

• ρ = (1/2,−1/2).

• Φ = 1.

• g =

(
∗ ∗
0 ∗

)
. Using that the power function is invariant by K and Z, we can take g =

(
y x

1

)
.

Hence we get the Eisenstein series

EP1,1(g, s) =
∑

γ∈

1 ∗
1

\SL(2,Z)

|γg|s+ρP1,1
=

∑
γ∈

1 ∗
1

\SL(2,Z)

∣∣∣∣γ (y x
1

)∣∣∣∣s1+1/2

P1,1

=
∑

(c,d)=1

ys+1/2

|(cx+ d) + icy|2s+1
.

Example 9.7. Now consider 3 = 2 + 1. We have

• s = (s1, s2), with 2s1 + s2 = 0.

• ρ = (1/2,−1).

• Let φ1 : h2 → C be a SL(2,Z) Maass form, and φ2 = 1. Then Φ = φ1.

• g =

∗ ∗ ∗∗ ∗ ∗
∗

 =

(
m1(g) ∗

m2(g)

)
∈ P2,1, where m1(g) ∈ GL(2,R) and m2(g) ∈ GL(1,R).
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Now
EP2,1,Φ(g, s) =

∑
γ∈

SL(3,Z)∩


∗ ∗ ∗
∗ ∗ ∗

∗


\SL(3,Z)

Φ(m1(γg)))|γg|s+ρP2,1.

Example 9.8. For 4 = 2 + 2, we have

• s = (s1, s2) with 2s1 + 2s2 = 0

• ρ = (1,−1)

• Let φ1 : h2 → C and φ2 : h2 → C be SL(2,Z) Maass forms.

• g =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

 =

(
m1(g) ∗

m2(g)

)
∈ P2,2, where m1(g),m2(g) ∈ GL(2,R).

Now
EP2,2,Φ(g, s) =

∑
γ∈

SL(4,Z)∩


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗



\SL(4,Z)

Φ1(m1(γg))Φ2(m2(γg))|γg|s+ρP2,2
.

Now, we will preview what we will talk about in the next few lectures.
For SL(2,Z) Eisenstein series, we have a Fourier expansion: for s = (s1,−s1), we have

EP1,1
(g, s) = y1/2+s1+

ζ∗(2s1)

ζ∗(2s1 + 1)
y1/2−s1+

1

ζ∗(2s1 + 1)

∑
m6=0

σ2s1(m)|m|−s1√y
ˆ ∞

0

e−π|m|y(u+1/u)us1
du

u
·e2πimx,

where
ζ∗(s) = π−s/2Γ(s/2)ζ(s) = ζ∗(1− s)

is the completed Riemann zeta function.
The function as is has poles because of the zeta function. To complete it, consider

ζ∗(2s1 + 1)EP1,1(g, s);

This has functional equation s = (s1, s2)→ (s2, s1).
The same thing happens with general Langlands functions as well – will need to multiply by the right thing
to get the functional equation. In the 4 = 2 + 2 case, the function needed to multiply is the Rankin-Selberg
convolution L(s, φ1 ⊗ φ2); hence we can use this theory to get a functional equation for Rankin-Selberg
L-functions.

Remark 9.9. Is it possible to get something similar for Rankin-Selberg products of 3 or more Maass forms?
Not on SL(n,Z), but people are looking at Eisenstein series associated to other groups (loop groups?).
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10 Lecture 10 - 2/27/25

Last time, we talked about the Langlands Eisenstein series. This time, we want to compute the Fourier
coefficients of the Eisenstein series.
There are two approaches:

• Explictily computing the Fourier coefficients via an integral. Generalized by Langlands to all SL(n,Z),
but fairly annoying.

• Use Hecke operators. This approaches generalizes to SL(n,Z) more easily.

We motivate these approaches by looking at SL(2,Z).

10.1 Fourier Expansion for SL(2,Z) Eisenstein Forms

Consider an automorphic form F for SL(2,Z) (a term we haven’t defined, but for now think of a Maass
form or an Eisenstein series) with Langlands parameter α = (α1, α2). We previously described their Fourier
expansion

F (z) = a0y
1/2+α1 + a′0y

1/2+α2 +
∑
n 6=0

an
√
yKα1

(2π|n|y)e2πinx,

where

Kα(y) =
1

2

ˆ ∞
0

e−
y
2 (u+1/u)uα

du

u

is the Bessel function and the ai are constants in C. We normalize this function by letting a1 = 1.
Recall from last time that we have the classical Eisenstein series

EP1,1(z, s) =
∑

γ∈

1 ∗
1

\SL(2,Z)

(Im γz)s+1/2 =
∑

a b
c d

∈
1 ∗

1

\SL(2,Z)

(
y

|cz + d|2

)s+1/2

.

We wish to compute the Fourier expansion. How do we do so? Langlands computed the Fourier expansion
by computing the integral

ζ(2s+ 1)

ˆ 1

0

EP1,1(x+ iy, s)e−2πinx dx =

ˆ 1

0

ζ(2s+ 1)
∑

(c,d)=1

ys+1/2

((cx+ d)2 + (cy)2)s+1/2
e−2πinx dx

=

ˆ 1

0

∑
(c,d)6=(0,0)

ys+1/2

((cx+ d)2 + (cy)2)s+1/2
e−2πinx dx

= 2ζ(2s+ 1)ys+1/2δn=0 +

ˆ 1

0

∑
c 6=0

ys+1/2

((cx+ d)2 + (cy)2)s+1/2
e−2πinx dx

where the first term corresponds to the c = 0 term. To compute the second integral, we note that

ˆ 1

0

∑
c6=0

ys+1/2

((cx+ d)2 + (cy)2)s+1/2
e−2πinx dx =

∑
c 6=0

∞∑
m=−∞

c∑
r=1

ˆ 1

0

ys+1/2

((cx+mc+ r)2 + (cy)2)s+1/2
e−2πinx dx

=
∑
c 6=0

1

|c|2s+1

∞∑
m=−∞

|c|∑
r=1

ˆ 1−m−r/c

−m−r/c

ys+1/2

(x2 + y2)s+1/2
e−2πin(x−r/c) dx

= 2

∞∑
c=1

1

c2s+1

c∑
r=1

e−2πir/c

ˆ ∞
−∞

ys+1/2

(x2 + y2)s+1/2
e−2πinx dx
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where we apply the transformation x→ x−m− 1/c, then

=2

∞∑
c=1

1

c2s+1

c∑
r=1

e−2πir/c

ˆ ∞
−∞

ys+1/2

y2s+1(x2 + 1)s+1/2
e−2πinxyy dx

=2
∑
c|n

c−2sy1/2−s
ˆ ∞
−∞

1

(x2 + 1)s+1/2
e−2πinxy dx

=

{
2ζ(2s)y1/2−s√π Γ(s)

Γ(s+1/2) n = 0

4σ−2s(n)y1/2 π
s+1/2|n|s

Γ(s+1/2) Ks(2πn|y|) n 6= 0

where here we apply the transformation x → xy, and the last line is a known integral computation. Here
σk(n) =

∑
d|n n

k.
Hence we get that the Fourier expansion is

EP1,1(z, s) = 2ys+1/2 + 2y1/2−s
√
πΓ(s)ζ(2s)

Γ(s+ 1/2)ζ(2s+ 1)
+

4πs+1/2y1/2

Γ(s+ 1/2)ζ(2s+ 1)

∑
n 6=0

σ−2s(n)|n|sKs(2πn|y|)e2πinx

10.2 Hecke Operators for SL(2,Z)
For SL(2,Z), let F : SL(2,Z)\h2 → C be an automorphic form. For n = 1, 2, . . . , the Hecke operators are
defined by

TnF (z) =
1√
n

∑
ad=n

0≤b<d

F

(
az + b

d

)
.

Theorem 10.1 (Hecke). TnF (z) = anF (z).

The L-function associated with F is

L(s, f) :=

∞∑
n=1

an
ns
.

This has an Euler product ∏
p

2∏
i=1

(
1− αi(p)

ps

)−1

,

where the αi(p) are the roots of a quadratic involving ap.

Remark 10.2. The Hecke operators are Γ-invariant, and adelically they act at the finite places (in compar-
ison to the differential operators, which act at the infinite place).

Now with the Hecke operators, we can define the concept of an automorphic form:

Definition 10.3. An automorphic form for SL(2,Z) with Langlands parameters α = (α1, α2) is a
smooth function F : h2 → C such that

• F (γz) = F (z) for all γ ∈ SL(2,Z)

• F (z)� yB for z = x+ iy and some B > 0 fixed.

• ∆F =
(

1
4 − α

2
1

)
F

• TnF = anF .

To compute Tn on E(z, s), it is enough to compute Tn on the power function, since Tn is SL(2,Z)-invariant.
In particular, note that

Tn(Im z)s+1/2 =
1√
n

∑
ad=n

0≤b<d

(
Im

az + b

d

)s+1/2

=
1√
n

∑
ad=n

0≤b<d

(ny
d2

)s+1/2

= nsσ−2s(n)(Im z)s+1/2,
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and nsσ−2s(n) appears in the expansion of the Eisenstein series.
Thus, in general, to compute the Fourier expansion for SL(n,Z) automorphic forms, we will need to extend
the theory of Hecke operators.

10.3 Hecke Operators in General

Let G be a group, acting on a topological space X. Let Γ ⊆ G be a discrete subgroup.

Definition 10.4. An element g ∈ G is a commensurator if (g−1Γg)∩Γ is of finite index in g−1Γg and Γ.

We have the commensurator subgroup CG(Γ) =
{
g ∈ G | (g−1Γg) ∩ Γ finite index in g−1Γg and Γ

}
.

Consider g ∈ CG(Γ) and letting d be the index of (g−1Γg) ∩ Γ in Γ, we have a right coset decomposition

Γ = ∪di=1((g−1Γg) ∩ Γ)δi,

with the δi ∈ Γ. Equivalently, this can be written as

ΓgΓ = ∪di=1Γgδi.

Definition 10.5 (Hecke Operator). Consider F ∈ L2(Γ\X) and a fixed g ∈ CG(Γ). We define

TgF (x) :=

d∑
i=1

F (gδix).

Note that the definition is independent of choice of δi because if δi and δ∗i are in the same coset, then
δi = g−1γgδ∗i , or equivalently gδi = γgδ∗i for some γ ∈ Γ, and F is Γ left-invariant.

Claim 10.6. Tg : L2(Γ\X)→ L2(Γ\X).

The L2 condition is simple to check; this is really checking that

(TgF )(γx) = (TgF )(x)

for all γ ∈ Γ.

Proof. We have by definition

TgF (δx) =

d∑
i=1

F (gδiγx).

By the coset decomposition, we can write δiγ = δ′iδσ(i), where σ ∈ Sd is a permutation of 1, . . . , d and
δ′i ∈ (g−1Γg) ∩ Γ. Moreover, gδiγ = gδ′iδσ(i) = δ′′i gδσ(i) for some δ′′i ∈ Γ. Thus

TgF (γx) =

d∑
i=1

F (δ′′i gδσ(i)x) =

d∑
i=1

F (gδσ(i)x) = TgF (x).

We have a additive group of Hecke operators by taking the additive group generated by the Tg.

Example 10.7. For Γ = SL(2,Z), G = GL(2,R), X = h2, and F ∈ L2(Γ\h2). Note that the element

g =

(
n0n1 0

0 n0

)
∈ CG(Γ),

with n0, n1 ∈ Z. Consider

Sn =

{(
a b
0 d

)
| ad = n, 0 ≤ b < d

}
.

By taking our Hecke operator to be the sum of Tg, with g =

(
n0n1 0

0 n0

)
with determinant n, one can check

that the elements of Sn can be used as the δi in our decomposition. This returns the original Hecke operator
we defined earlier.
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Theorem 10.8. For SL(2,Z), Tmn = TmTn if (m,n) = 1.

To prove this in general, we need to find a way to muliply Hecke operators and express the answer as a sum
of Hecke operators; i.e. we want to extend our additive group of Hecke operators to a ring.
In particular, consider g, h ∈ CG(Γ), with ΓgΓ = ∪iΓαi and ΓgΓ = ∪iΓβi. We have

(ΓgΓ)(ΓhΓ) = (ΓgΓ) ∪j Γβj = ∪i,jΓαiβj .

Then the product TgTh corresponds to summing over the αiβj .
Next time, we will prove that the Hecke operators in general are commutative, then talk about the GL(n)
Hecke operators.
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11 Lecture 11 - 3/4/25

11.1 Hermite and Smith Normal Form

We take a small aside to talk about Hermite and Smith normal forms for integer matrices, which we will use
in the discussion for Hecke operators.
Let A ∈ GL(n,Z)+. Then there exists γ ∈ SL(n,Z) such that

γA =


c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn


where the ci ≥ 1 and the ci,` < c`. This is called the Hermite normal form. This exists because left
multiplication by SL(n,Z) corresponds to row operations on the matrix.
Similarly, there exists γ, γ′ ∈ SL(n,Z) such that

γAγ′ =


dn

. . .

d2

d1


with di > 0, and d1 | d2 | · · · | dn. This is called the Smith normal form, which exists because now we
also have column operations on the matrix.
The uniqueness of these forms can be proven directly by comparing what SL(n,Z) matrix would be needed
to convert from one form to the other.
We introduce these forms to discuss Hecke operators for SL(n,Z).

11.2 Hecke operators in general

Consider a group G acting on topological space X, with discrete subgroup Γ. We have the commensurator
subgroup

CG(Γ) =
{
g ∈ G | (g−1Γg) ∩ Γ has finite index in Γ and g−1Γg

}
.

For any g ∈ Γ, we have double coset decomposition

ΓgΓ = ∪di=1Γαi.

With this decomposition, we define the associated Hecke operator Tg : L2(Γ\X)→ L2(Γ\X) by

TgF (x) :=

d∑
i=1

F (αix).

In particular, we showed last time that TgF (γx) = TgF (x).
Define an antiautomorphism on a group G to be a map ∗ : G→ G such that (x1x2)∗ = x∗2x

∗
1. In the case

of matrix groups, the matrix transpose is an antiautomorphism.

Lemma 11.1. If there exists ∗ such that Γ∗ = Γ and (ΓgΓ)∗ = ΓgΓ, then Tgh = TgTh; i.e. the Hecke
operators commute.

The proof can be found in Dorian’s book.
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11.3 Hecke operators for SL(n,Z)
We now specialize to the case G = GL(n,R), Γ ∈ SL(n,Z) and X = hn = GL(n,R)/(O(n,R) · R∗).
By the previous discussion, the Hecke operators on SL(n,Z) commute. Moreover, it is easy to verify that the
Hecke operators commute with all of the left GL(n,R)-invariant differential operators. By functional analysis,
we can decompose L2(Γ\hn) into a basis of simultaneous eigenfunctions of all the differential operators and
Hecke operators. (There is a spectral theorem for unbounded operators, which will not talk about.)
Such a function will be called a Hecke form - a (smooth) Maass form that is simultaneous eigenfunctions
of the differential operators.
We now construct the Hecke operators for SL(n,Z). For any positive integer m, consider the set Dm of all
matrices of the form

m′ =


m0m1 . . .mn−1

. . .

m0m1

m0


of determinant m. We want to compute Tm, the Hecke operator corresponding to the union of all of
the matrices in Dm. In particular, this will mean looking at the αi in the double coset decomposition⋃
m′∈Dm Γm′Γ =

⋃
Γαi.

Let

Sm =



c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

 | ci ≥ 1, 0 ≤ ci,` < c`, c1c2 . . . cn = det(m)

 .

Claim 11.2.

⋃
m′∈Dm

Γm′Γ =
⋃
ci≥1

0≤ci,`<c`
c1c2...cn=det(m)

Γ


c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

 .

The proof of this claim follows directly from the uniqueness of Hermite and Smith normal forms.
Hence we have the Hecke operator

TmF (g) =
∑

F



c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

 g

 = λmF (g)

for F a Hecke form.

11.4 Hecke operators applied to Borel Eisenstein series

Consider the Borel subgroup B of upper triangular matrices (the parabolic subgroup corresponding to
n = 1 + 1 + · · ·+ 1) and b ∈ B, with Yi the elements on the diagonal. We have the power function

|b|sB =

n∏
i=1

Y sii ,

where s = (s1, s2, . . . , sn) with s1 + · · ·+ sn = 0. This function satsifies

|ubkz|sB = |b|sB ,

where u is unipotent, k ∈ K = O(n,R), and z ∈ Z is in the center of GL(n,R).
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Then
EB(g, s) =

∑
γ∈Γ∩B\Γ

|γg|s+ρB ,

where ρi = n+1
2 − i.

To compute TmEB(g, s), it is enough to compute Tm|g|s+ρB . In particular,

Tm|g|s+ρB =
∑
ci≥1

0≤ci,`<c`
c1c2...cn=det(m)

∣∣∣∣∣∣∣∣∣


c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

 g

∣∣∣∣∣∣∣∣∣
s+ρ

B

=
∑
ci≥1

0≤ci,`<c`
c1c2...cn=det(m)

∣∣∣∣∣∣∣∣∣


c1

c2
. . .

cn



y1 . . . yn−1

y1 . . . yn−2

. . .

1


∣∣∣∣∣∣∣∣∣
s+ρ

B

=
∑
ci≥1

0≤ci,`<c`
c1c2...cn=det(m)

n∏
i=1

(ciy1 . . . yn−i)
si+ρi

=


∑
ci≥1

0≤ci,`<c`
c1c2...cn=det(m)

n∏
i=1

csi+ρii

 |g|s+ρB ,

which is a divisor sum. We will show that this correspond to the Fourier coefficient of the mth term of the
Eisenstein series.
Next time, we will do this for Eisenstein series for an arbitrary parabolic. This time, the ci will be replaced
by Fourier coefficients of the Maass forms that are induced.
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12 Lecture 12 - 3/6/25

Up to now we’ve been focusing on Eisenstein series. Let’s switch back to Maass forms.

12.1 Maass Forms and Whittaker Functions for SL(n,Z)
Recall:

Definition 12.1. A SL(n,Z) (Hecke-)Maass form φ is a smooth function φ : hn → C such that

• φ(γg) = φ(g) for all γ ∈ Γn, g ∈ hn

• Dφ = λDφ for all D ∈ ZU(gl(n,R)), where λD matches the eigenvalue of the power function.

• TNφ = λ′Nφ for all Hecke operators

TNφ =
1

N
n−1

2

∑
ci≥1

0≤ci,`<c`
c1c2...cn=N

φ



c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

 g


•
´

Γn\hn |φ(g)|2 dg <∞ (moderate growth)

Here we are defining a Maass form at the archimedean place. It is possible to lift this to a Maass form
adelically, but we will not talk about this in the class. (For the case of SL(n,Z), the lift gives nothing new.)

Consider the group Un(R) =


1 uij

. . .

1


, and let M = (m1,m2, . . . ,mn−1) ∈ Zn−1. We have a

character ψM on Un(R), defined by

ψM (u) = e2πi(m1u1,2+m2u2,3+···+mn−1un−1,n).

In particular, it is easy to check that ψM (uu′) = ψM (u)ψM (u′).

Example 12.2. Let n = 3, M = (m1,m2), and u =

1 u1 u3

1 u2

1

. Then ψM (u) = e2πi(m1u1+m2u2).

We want to use these characters to give the Fourier expansion of the Maass forms. However, since Un(R) is
not commutative, this is more difficult.
The analogue of a Fourier coefficient of φ in this case is

φ̂M (g) =

ˆ 1

0

. . .

ˆ 1

0

φ(ug)ψM (u) du ,

where du =
∏

1≤i<j≤n dui,j . This will inherit properties of the Maass forms. In particular,

• φ̂M (gkz) = φ̂M (g) for all k ∈ Kn = O(n,R), and z ∈ Z.

• φ̂M (vg) = ψM (v)φ̂M (g)

• Dφ̂M (g) = λDφ̂M (g)

•
´

Γn\hn |φ̂M (g)|2 dg <∞

How many functions satisfy all these properties? Shalika showed (Mulitplicity One theorem) that there is
only one up to constant multiple. The proof for SL(2,Z) is simple, and there is a proof for SL(3,Z) in
Dorian’s book, but there is no known (at least to Dorian) simple proof for SL(n,Z).
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Remark 12.3. When working adelically, we need local Whittaker functions. Multiplicity one was proved for
them.

Jacquet constructed the function satsifying all of these properties. Recall we have the power function |g|s
(here s = (s1, . . . , sn) = α+ ρ, with

∑
si = 0). Recall that

|g|s = (y1 . . . yn−1)s1(y1y2 . . . yn−2)s2 . . . y
sn−1

1 .

Jacquet constructed the Jacquet-Whittaker function

WM (g) =

ˆ ∞
−∞

. . .

ˆ ∞
−∞
|wnug|sψM (u) du ,

where du =
∏

1≤i<j≤n dui,j and wn =


1

1
. . .

1

 is the long element of the Weyl group. Here the

long element is needed for convergence, and this integral will converge for Re(si) sufficiently large.

In particular, multiplicity one gives that φ̂M (g) = cMWM (g). What is this constant? It will turn out to
essentially be the Hecke eigenvalue.

12.2 Applications

We have the Whittaker expansion (for even Maass form φ)

φ(g) =
∑

γ∈Un−1\Γn−1

∞∑
m1=1

· · ·
∞∑

mn−1=1

A(m1, . . . ,mn−1)∏n−1
i=1 m

k(n−k)/2
k

WM

((
γ

1

)
g

)
.

(Here even means that φ is φ(g) = φ(δg), where

δ =


−1

1
. . .

1

 .

)
Then we can show that there exists an L-function

L(s, φ) =

∞∑
m=1

A(m, 1 . . . , 1)m−s

with a functional equation, which will be similar to the Riemann zeta function (n Gamma factors instead of
1).
This also has an Euler product∏

p

(
1−A(p, 1, . . . , 1)p−s + · · ·+ (−1)n−1A(1, . . . , 1, p)p−(n−1)s + (−1)np−ns

)−1

.

Example 12.4. Let n = 3, M = (m1,m2), and u =

1 u1 u3

1 u2

1

, M∗ =

m1m2

m2

1

, g = xy, and

w3 =

 −1
1

1

 (the definition is equivalent with −1 instead of 1 in the top right). Then the Whittaker

function is

Wn(g) =

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞
|w3ug|se−2πi(m1u1+m2u2) du1 du2 .
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Claim 12.5. WM (g) = cs,MW(1,1)(M
∗g), where the constant only depends on s and M .

Proof. We have that

W(1,1)(M
∗g) =

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞
|w3uM

∗g|se−2πi(u1+u2) du1 du2 du3

= m1m2

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞
|w3M

∗ug|se−2πi(m1u
′
1+m2u

′
2) du′1 du′2 du3

= m1m2

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞
|w3M

∗w−1
3 |s|w3ug|se−2πi(m1u

′
1+m2u

′
2) du′1 du′2 du3

= cs,MW(m1,m2)(g).

where u1 = u′1m1 and u2 = u′2m2.

Remark 12.6. This proof holds in general for all n; the constant will depend only on n, s, and M .

Our next goal is to show that TNφ(g) = A(N, 1, . . . , 1)φ(g). The Whittaker expansion gives that

ˆ 1

0

. . .

ˆ 1

0

φ(ug)ψM (u) du =
A(m1, . . . ,mn−1)∏n

k=1m
k(n−k)/2
k

WM (g).

Applying TN to φ̂M (g) gives

TN φ̂M (g) =

ˆ 1

0

. . .

ˆ 1

0

∑
ci≥1

0≤ci,`<c`
c1c2...cn=N

φ



c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

ug

ψM (u) du

= λN

ˆ 1

0

. . .

ˆ 1

0

φ(ug)ψM (u) du .

using that Tnφ = λNφ.

Let C∗ =


c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

. We can express C∗u = u′C∗, where

u′ij =
1

cj

j∑
k=1

ci,kuk,j .

Making this change of variables gives that

TN φ̂M (g) =
∑
ci≥1

0≤ci,`<c`
c1c2...cn=N

∏
1≤i<j≤n

ˆ ∗
ui,j=∗

φ

u′
c1 . . .

cn

 g

 e−2πi(∗) du′ ,

where the ∗ is a pretty bad computation (that can be found in Dorian’s book). Working through it gives

∑
ci≥1

0≤ci,`<c`
c1c2...cn=N

∏
1≤i<j≤n

ˆ ciN

cj

ui,j=0

φ

u′
c1 . . .

cn

 g

 e−2πi
∑n−1
r=1

cr+1mn−r
cr

u′r,r+1
cj
ci

du′ .
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Working through the mess gives

λNA(m1, . . . ,mn−1) =
∑

c1c2...cn=N
cn−1|m1,cn−2|m2,...c1|mn−1

A

(
m1cn
cn−1

,
m2cn−1

cn−2
, . . . ,

mn−1c2
c1

)
.

Next time, we will use this relation to finish up the computation regarding Hecke operators.
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13 Lecture 13 - 3/11/25

13.1 Fourier Coefficients of SL(n,Z) Maass Forms

We briefly review what we discussed last time. Let F be an (even) Maass form for Γn = SL(n,Z) with
Langlands parameters α = (α1, . . . , αn). Then we have a Fourier expansion

F (g) =
∑

γ∈Un−1\Γn−1

∞∑
m1=1

· · ·
∞∑

mn−1=1

A(m1, . . . ,mn−1)∏n−1
k=1 m

k(n−k)
2

k

W

(
M

(
γ

1

)
g, α, ψ1,...,1

)
,

where W is the Jacquet-Whittaker function

W (g, α, ψ) =

ˆ ∞
−∞

. . .

ˆ ∞
−∞
|ug|α+ρψ(u) du

and

M =


m1m2 . . .mn−1

m2 . . .mn−1

. . .

mn−1


(Note that this matrix is opposite to Dorian’s book, because in Dorian’s book the elements above the diagonal
are reversed in order.)
Last time, applying the Hecke operator TN to this expansion gave the identity

λNA(m1, . . . ,mn−1) =
∑

c1c2...cn=N
cn−1|m1,cn−2|m2,...c1|mn−1

A

(
m1cn
cn−1

,
m2cn−1

cn−2
, . . . ,

mn−1c2
c1

)
.

(More details can be found in Dorian’s book.)

Proposition 13.1. If A(1, . . . , 1) = 0, then A(m1, . . . ,mn−1) = 0 for all mi. If A(1, . . . , 1) 6= 0, normalize
it to be 1. Then λN = A(N, 1, . . . , 1). In particular, this gives the identity

A(N, 1, . . . , 1)A(m1, . . . ,mn−1) =
∑

c1...cn=N
c1|m1,...,cn−1|mn−1

A

(
m1cn
c1

,
m2c1
c2

, . . . ,
mn−1cn−2

cn−1

)

Proof. More details for this proof can be found in Dorian’s book. First, one needs to prove a multiplicativity
relation for relatively prime coefficients; see Dorian’s paper.
By setting all of the mi = 1, one can show that A(1, . . . , 1) = 0 implies that A(N, 1, . . . , 1) = 0 for all N .
Next, set N = m1 = p and m2 = · · · = mn−1 = 1. Then

0 = λpA(p, 1, . . . , 1) =
∑

c1cn=p

A

(
p2

c21
, c1, 1, . . . , 1

)
,

so we conclude that A(1, p, 1, . . . , 1) = 0.
One can inductively take higher powers of p and later positions of A(1, . . . , 1, p, 1 . . . , 1) (and apply the
multiplicativity relation) prove the relation.
Now, suppose A(1, . . . , 1) = 1. Setting mi = 1 in the previous relation gives the final equation.

13.2 L-functions of SL(n,Z) Maass forms

To a Maass form F , we associate the L-function

L(s, F ) =

∞∑
n=1

A(m, 1, . . . , 1)

ms
.

We can show that this L-function satsifies an Euler product.
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Proposition 13.2. Define

φp(s) =

∞∑
k=0

A(pk, 1, . . . , 1)

pks
.

Then L-function has an Euler product

L(s, F ) =
∏
p

φp(s),

where

φp(s) =
(

1−A(p, 1, . . . , 1)p−s +A(1, p, 1, . . . , 1)p−2s + · · ·+ (−1)n−1A(1, . . . , 1, p)p−(n−1)s + (−1)np−ns
)−1

.

Proof. For positive integer k, we have the relation

A(pk, 1, . . . , 1)A(p, 1, . . . , 1) = A(pk+1, 1, . . . , 1) +A(pk−1, p, 1, . . . , 1) + . . . .

Similarly,
A(pk, 1, . . . , 1)A(1, p, . . . , 1) = A(pk, p, . . . , 1) +A(pk−1, 1, p, . . . , 1) + . . . .

One can repeat this for all positions of the p. Adding them all up with alternative signs and multiplying by
the right power of p−s gives the desired result. More details can be found in Dorian’s book.

Example 13.3. In the SL(3,Z) case, we have the L-function

L(s, F ) =

∞∑
m=1

A(m, 1)

ms
=
∏
p

(
1−A(p, 1)p−s +A(1, p)p−2s − p−3s

)−1
.

We note that we have a bound on the Fourier coefficients.

Proposition 13.4. ∣∣∣∣∣∣A(m1,m2, . . . ,mn−1)∏n−1
k=1 m

k(n−k)
2

k

∣∣∣∣∣∣ = Oα(1).

Proof. By the Fourier expansion, we have that

ˆ 1

0

. . .

ˆ 1

0

F (ug)ψ(m1,...,mn−1)(u) du =
A(m1, . . . ,mn−1)∏

m
k(n−k)/2
k

W (. . . ),

where
ψ(m1,...,mn−1)(u) = e2πi(m1u1,2+···+mn−1un−1,n).

Then since the Maass form and Whittaker function are bounded and only depend on α, we are done.

Hence L(s, F ) converges for Re(s) sufficiently large.
We also have the functional equation for L-function associated to a Maass form. We won’t prove it, but we
state it. To do so, we need to define the dual Maass form.

Definition 13.5. Let F be a Maass form for SL(n,Z) with Langlands parameter α = (α1, . . . , αn) ∈ Cn,

where α1 + · · ·+ αn = 0. The dual Maass form F̃ is defined to be

F̃ (g) = F (w(g−1)Tw−1)

where w is the long element of the Weyl group of SL(n,Z)

w =


(−1)bn/2c

1
. . .

1

 .
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Remark 13.6. Because F is SL(n,Z)-invariant on the left and O(n,R)-invariant on the right, we can
equivalently define

F̃ (g) = F ((g−1)T ).

However, w(g−1)Tw−1 puts the matrix (g−1)T into a useful Iwasawa form.

What are the Langlands parameters of F̃? Considering any D ∈ Dn, we know that DF̃ needs to have
the same eigenvalue as |w(g−1)Tw−1|α+ρ. We note that comparing w(g−1)Tw−1 to g, the only difference

is that the diagonal elements have been reversed. This corresponds to F̃ having Langlands parameters
(−αn, . . . ,−α1).
We can now define the functional equation (for even Maass forms).

Proposition 13.7 (Functional equation). If F is an even SL(n,Z) Maass form with Langlands parameters
(α1, . . . , αn), then the completed L-function

L∗(s, F ) = π
−ns

2

n∏
j=1

Γ

(
s− αj

2

)
L(s, F )

satsifies the functional equation
L∗(s, F ) = L∗(1− s, F̃ ).

Remark 13.8. The functional equation is much more difficult for congruent subgroups; you get ramification,
and the Langlands parameters do not determine everything.

13.3 Bump Double Dirichlet series for SL(3,Z)
For a SL(3,Z) Maass form F , we can define a special double Dirichlet series first defined by Bump:

∞∑
m1=1

∞∑
m2=1

A(m1,m2)

ms1
1 m

s2
2

Proposition 13.9.
∞∑

m1=1

∞∑
m2=1

A(m1,m2)

ms1
1 m

s2
2

=
L(s1, F )L(s2, F̃ )

ζ(s1 + s2)
.

Remark 13.10. Nothing like this exists for GL(4) – this is special for GL(3).

Proof. We have

A(m1, 1)A(1,m2) =
∑

d|gcd(m1,m2)

A(m1/d,m2/d).

Then

L(s1, F )L(s2, F̃ ) =

∞∑
m1=1

∞∑
m2=1

A(m1, 1)A(1,m2)

ms1
1 m

s2
2

=

∞∑
m1=1

∞∑
m2=1

1

ms1
1 m

s2
2

∑
d|gcd(m1,m2)

A(m1/d,m2/d)

=

∞∑
m′1=1

∞∑
m′2=1

∑
d

1

(m′1d)s1(m′2d)s2
A(m′1,m

′
2)

= ζ(s1 + s2)

∞∑
m′1=1

∞∑
m′2=1

A(m1,m2)

m′1
s1m′2

s2

where m1 = m′1d and m2 = m′2d.
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Remark 13.11. There is no good unified theory of multiple Dirichlet series with L-functions over several
complex variables. Note that this isn’t really a two-variable L-function - just a product of two GL(2) L-
functions.
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14 Lecture 14 - 3/13/25

14.1 Selberg Spectral Decomposition for SL(2,Z)
Consider L2(Γ\h2), where Γ = SL(2,Z). The Selberg spectral decomposition states that

L2(Γ\h2) = C⊕ cusp forms⊕ Eisenstein series,

where the cusp forms are called the discrete spectrum and are countable, and the Eisenstein series are
called the continuous spectrum and are uncountable.
We make this decomposition more explicit.

Theorem 14.1 (Selberg spectral decomposition for SL(2,Z)). Consider smooth F ∈ L2(Γ\h2). Let ηj(g)
for j = 0, 1, 3 . . . be an orthonormal basis of Maass forms, orthonormal with respect to the Petersson inner

product, and η0(g) =
√

3
π . Then

F (g) =

∞∑
j=0

〈F, ηj〉 ηj(g) +
1

4π

ˆ 1/2+i∞

1/2−i∞
〈F,E(∗, s)〉E(g, s) ds .

Remark 14.2. Here we use the classical definition of the Eisenstein series

E(g, s) = E(z, s),

of the form

E(g, s) = ys + φ(s)y1−s +
2
√
y

ζ∗(2s)

∑
n 6=0

σ1−2s(n)|n|s−1/2Ks−1/2(2π|n|y)e2πinx,

where ζ∗(s) = π−s/2Γ(s/2)ζ(s) = ζ∗(1− s) is the completed Riemann zeta function and

φ(s) =
ζ∗(2s− 1)

ζ∗(2s)
.

This will have poles (at least heuristically by RH) at Re(s) = 1
4 ; hence we choose the contour integral to be

the right of Re(s) = 1
4 .

We also recall that we have the functional equation

E(g, s) = φ(s)E(g, 1− s)

and
φ(s)φ(1− s) = 1.

The proof will use the Mellin transform:

Definition 14.3. Given H : R→ C (satsifying some convergence conditions, for example for H Schwartz),
the Mellin transform is

H̃(s) =

ˆ ∞
0

H(u)us
du

u

and inverse Mellin transform is

H(y) =
1

2πi

ˆ c+i∞

c−i∞
H̃(s)y−s ds ,

where c is chosen large enough such that H̃(s) has no poles to the right.

Proof of Selberg Spectral Decomposition. The proof will follow in two steps. Let

F (g) =
∑
n∈Z

An(y)e2πinx

be the Fourier decomposition of F , and suppose that F is orthogonal to the constant function. We will

50



Austin Lei

1. Show that 〈F,E(∗, s)〉 = Ã0(s− 1).

2. Show that

F (g)− 1

4πi

ˆ 1/2+i∞

1/2−i∞
〈F,E(∗, s)〉E(g, s) ds

has constant term 0.

Step 1 Proof: We have that

〈F,E(∗, s)〉 =

ˆ
Γ\h2

F

((
y x
0 1

))1

2

∑
γ∈Γ∞\Γ

(Im γz)s

 dx dy

y2

=
1

2

∑
γ∈Γ∞\Γ

ˆ
γ(Γ\h2)

F (z)(Im z)s
dxdy

y2

=

ˆ ∞
0

ˆ 1

0

F (z)ys
dxdy

y2

=

ˆ ∞
0

A0(y)ys−2 dxdy

= Ã0(s− 1),

where in the third line we move to an integral over the space Γ∞\Γ, and the factor of 1/2 disappears because
−I2 ∈ SL(2,Z) fixes h2.
Step 2 Proof: Recall that the functional equation of E(z, s) gives

E(z, s) = φ(s)E(z, 1− s).

Hence, we know that

Ã0(s− 1) = 〈F,E(∗, s)〉 = 〈F, φ(s̃)E(∗, 1− s)〉 = φ(s)Ã0(−s),

and so
Ã0(−s) = φ(1− s)Ã0(s− 1).

Taking the inverse Mellin transform gives

A0(y) =
1

2πi

ˆ 1/2+i∞

1/2−i∞
Ã0(s− 1)y1−s dy

and applying the above identity gives

A0(y) =
1

2πi

ˆ 1/2+i∞

1/2−i∞
Ã0(−s)φ(s)y1−s dy .

We also can apply the transformation 1− s→ s to the original inverse Mellin transform to get

A0(y) =
1

2πi

ˆ 1/2+i∞

1/2−i∞
Ã0(−s)ys dy

Adding the two equations together gives

A0(y) =
1

4πi

ˆ 1/2+i∞

1/2−i∞
Ã0(−s)(ys + φ(s)y1−s) dy .

For Re(s) = 1/2, note that Ã0(−s) = Ã0(s− 1), and by the first step we know that

Ã0(−s) = Ã0(s− 1) = 〈F,E(∗, s)〉 .
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Thus we get that

A0(y) =
1

4πi

ˆ 1/2+i∞

1/2−i∞
〈F,E(∗, s)〉 (ys + φ(s)y1−s) dy ,

where we note that ys + φ(s)y1−s is precisely the constant term of E(g, s). Since the other parts of the
expansion will contribute to the nonconstant terms in the Fourier expansion, we conclude that

F (g)− 1

4πi

ˆ 1/2+i∞

1/2−i∞
〈F,E(∗, s)〉E(g, s) ds

has constant term 0, as desired.

14.2 Selberg Spectral Decomposition for SL(n,Z)
How do we generalize the decomposition to SL(n,Z)?
Recall that we have the parabolic subgroups

Pn1,...,nr =




GL(n1) ∗
GL(n2)

. . .

GL(nr)




corresponding to partitions of n = n1 + · · ·+ nr. We also defined the power function

|g|s =

r∏
i=1

|det(mi)|si

for g ∈


m1 ∗

m2

. . .

mr

 ∈ Pn1,...,nr , where s = (s1, . . . , sr) ∈ Cr, with
∑
nisi = 0. We also defined

an induced Maass form

Φ(g) =

r∏
i=1

φi(mi),

where each φi ∈ L2(Γn\hn).
With these, we defined the Langlands Eisenstein series

EPn1,...,nr ,Φ
(g, s) =

∑
γ∈(Γn∩Pn1,...,nr )\Γn

Φ(γg)|γg|s+ρ.

Langlands and Arthur showed a corresponding spectral decomposition for L2(SL(n,Z)\hn):

Theorem 14.4 (Langlands-Arthur). Let φ1, φ2, . . . be an orthonormal basis for cusp forms for SL(n,Z).
Let F ∈ L2(SL(n,Z)\hn) be such that F is orthogonal to the residual spectrum (residues of Eisenstein series
in the s variable). Then

F (g) =

∞∑
j=1

〈F, φj〉φj(g) +
∑

P=Pn1,...,nr

∑
Φ

¨
n1s1+···+nrsr=0

Re(sj)=0

〈F,EP,Φ(∗, s)〉EP,Φ(g, s) ds ,

where ds =
∏r
i=1 dsr.

Remark 14.5. In SL(2,Z), E(z, s) = ys + φ(s)y1−s + . . . has a pole at s = 1, with constant residue (as
y0 = 1). Hence the residual spectrum in the SL(2,Z) case are precisely the constant functions.

Example 14.6. For SL(4,Z), let Φ = (φ1, φ1), two GL(2) cuspforms. We will also have a function φ(s)
with is a ratio of L(s, φ1 × φ1). This will give the first interesting example of a residual spectrum.
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14.3 Kuznetsov Trace Formula

For the next week, we will talk about the Kuznetsov Trace formula. We want to construct an automorphic
form that is not an Eisenstein series, and apply the spectral expansion to it. In particular, the automorphic
forms we wish to define are the Poincare series.

Definition 14.7 (Poincare Series). For any M = (m1, . . . ,mn−1) ∈ Zn−1, we have the Poincare series

PM (g, s) =
∑

γ∈Un\Γn

|γg|s+ρΨM (γg),

where Γn = SL(n,Z), Un is the group of unipotent matrices, and

ΨM (g) = ΨM (x) = e2πi(m1x1,2+m2x2,3+···+mn−1xn−1,n),

where g = xy is the Iwasawa decomposition.

Remark 14.8. If M = (0, . . . , 0), we recover the Eisenstein series.

Remark 14.9. This can be generalized to any parabolic subgroup.

Note that for any SL(n,Z) Maass form φ and any M = (m1, . . . ,mn−1),

〈
φ, PM (g, s)

〉
=

ˆ
Γn\hn

φ(g)
∑

γ∈Un\Γn

|γg|s+ρΨ(m,1,...,1)(γg)d∗g

=

ˆ ∞
y1=0

. . .

ˆ ∞
yn=0

ˆ 1

0

. . .

ˆ 1

0

φ(g)ψ(m,1,...,1)(x)|y|s+ρd∗g,

where d∗g is the GL(n,R)-invariant measure. Note that if M = (m, 1, . . . , 1) (and φ a Hecke-Maass form),
this integral is precisely A(m, 1, . . . , 1) times the Mellin transform of a Whittaker function – note that this
is the same as what happens with M = (0, . . . , 0) (i.e. when the Poincare series is the Eisenstein series).

Remark 14.10. The Mellin transform of a Whittaker function is understood for SL(2,Z) and SL(3,Z),
but not well understood for n ≥ 4. In these cases, we can include a test function in PM (g, s) to get better
information about the integral of the Whittaker function.

One application of the Kuznetsov trace formula is to get information about the average value of the jth
coefficient of a Maass form. We will talk about this application in the future.

Remark 14.11. In the spectral expansion generally, the most difficult terms to compute are the continuous
spectrum, which will typically affect the error terms. Next time, we’ll talk about some applications, which
give better results than considering this from the representation theoretic perspective, because we tackle the
continuous spectrum directly.
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15 Lecture 15 - 3/25/25

15.1 Functional Equation of the Maximal Parabolic Langlands Eisenstein Series

Recall that we have the parabolic subgroup

Pn1,...,nr =




GL(n1) ∗
GL(n2)

. . .

GL(nr)




with Langlands decomposition

g =


In1

∗
In2

. . .

Inr



m1

m2

. . .

mn

 .

For s = (s1, . . . , sr) with
∑
nisi = 0, we have the power function

|g|sPn1,...,nr
=

r∏
i=1

|det(mi(g))|si

and Langlands Eisenstein series

EPn1,...,nr
(g, s) =

∑
γ∈(Pn1,...,nr

∩SL(n,Z))\SL(n,Z)

|γg|s+ρ,

where ρi = n−ni
2 − n1 − · · · − ni−1.

Our goal is to completely understand the Eisenstein series; i.e. we want to get their Fourier coefficients and
the functional equation.
There is one case where we can get everything via Poisson summation - the case of the maximal parabolic
subgroup of SL(n,Z) (the maximal compact subgroup, also known as the mirabolic subgroup):

Pn−1,1 =

(
GL(n− 1) ∗

1

)
.

In this case, we have s = s1 + s2 with (n− 1)s1 + s2 = 0, with ρ = ( 1
2 ,−

n−1
2 ). Hence

EPn−1,1
(g, s) =

∑
γ∈(Pn−1,1∩Γn)\Γn

(det γg)s1+1/2.

Theorem 15.1. EPn−1,1(g, s) has meromorphic continuation to all of si ∈ C, with simple poles at s1 = ±1/2.
In particular, we also have the completed Eisenstein series

E∗Pn−1,1
(g, s) = π−

n(s1+1/2)
2 Γ

(
n(s1 + 1/2)

2

)
ζ(n(s1 + 1/2))EPn−1,1(g, s)

with functional equation
E∗Pn−1,1

(g, (s1, s2)) = E∗Pn−1,1
((g−1)T , (−s1,−s2)).

Proof. We can prove this functional equation using Poisson summation: for a smooth function f : Rn → C
and g ∈ GL(n,R), ∑

m∈Zn
f(mg) =

1

|det g|
∑
m∈Zn

f̂(m(g−1)T ),
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where

f̂((x1, . . . , xn)) =

ˆ ∞
−∞

. . .

ˆ ∞
−∞

f((t1, . . . , tn))e−2πi(t1x2+···+tnxn) dt1 . . . dtn .

For γ, γ′ ∈ (Pn−1,1 ∩Γn)\Γn, we note that for pγ = γ′ with p ∈ Pn−1,1, this occurs iff the last rows of γ′ and
γ share the same greatest common factor. Thus we can write

γg =

(
∗

a1 . . . an

)1 xij
. . .

1



y1 . . . yn−1

. . .

y1

1

 =

(
∗

b1 . . . bn

)

What do the elements in the last row look like? We can compute that

b1 = a1y1 . . . yn−1

b2 = (a1x12 + a2)y1 . . . yn−1

...

bn = a1x1,n + a2x2,n + · · ·+ an−1xn−1,n + an

We can now rewrite the Eisenstein series in terms of these new coefficients, which will give an Epstein zeta
function.
However, this previous formulation for γ ·g is not in Iwasawa form, and must be converted to get the formula
for the Eisenstein series. Let γ · g = τk(rIn), where τ is the Iwasawa form for γ · g (i.e. k ∈ O(n,R) and
r ∈ R). We want to compute

det(γ · g)
s

= (det τ)s.

Note that γg(γg)T = r2ττT . This implies that

b21 + · · ·+ b2n = r2

by examining the bottom right element on both sides.
Thus

det(γ · g) = det τ =
det γ

det g
r−n = det(g)(b21 + · · ·+ b2n)−n/2,

so we can write
EPn−1,1

(g, s) = (det g)s1+1/2
∑

(a1,...,an)6=0
(a1,...,an)=1

(b21 + · · ·+ b2n)−
n(s1+1/2)

2 .

Multiplying by ζ
(
n(s1+1/2)

2

)
removes the relatively prime condition. Hence

ζ

(
n(s1 + 1/2)

2

)
EPn−1,1

(g, s) =
∑

(a1,...,an)6=0

(b21 + · · ·+ b2n)−
n(s1+1/2)

2 .

Now we apply Poisson summation to get the meromorphic continuation. Let

fu((x1, . . . , xn)) = e−π(x2
1+···+x2

n)u.

Then

E∗Pn−1,1
(g, s) = |det(g)|s1+1/2

ˆ ∞
0

 ∑
(a1,...,an)∈Zn

fu((a1, . . . , an)g)− fu((0, . . . , 0))

u
n(s1+1/2)

2
du

u
,

where one can now finish as in the functional equation of the Riemann zeta function (by splitting the integral
into the integral from 0 to 1 and the integral from 1 to infinity). The poles arise from the fu((0, . . . , 0))
term.

Remark 15.2. The Langlands functional equation is

E∗Pn−1,1(g, (s1, s2)) = E∗P1,n−1
(g, (s2, s1)).

It turns out be equivalent to the functional equation we have above.
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15.2 Rankin-Selberg for GL(n)×GL(n)

Let φ1, φ2 be (even, for simplicity) Maass forms for SL(n,Z), with Hecke coefficients Aφ1
(n) and Aφ2

(n),
and corresponding L-functions

L(w, φ1) =
∑
n

Aφ1(n)

nw

and

L(w, φ2) =
∑
n

Aφ2(n)

nw
.

Definition 15.3. The Rankin-Selberg L-function is defined to be

L(w, φ1 × φ2) =

∞∑
m1=1

· · ·
∞∑

mn=1

Aφ1
(m1, . . . ,mn−1)Aφ2

(m1, . . . ,mn−1)

(mn−1
1 mn−2

2 . . .mn−1)w

which converges absolutely for Re(w) sufficiently large.

One can can use the Euler products of the Maass forms to get the Euler product of the Rankin-Selberg
L-function.

Proposition 15.4. If φ1 and φ2 have Euler products

L(w, φ1) =
∏
p

n∏
i=1

(1− αp,ip−w)−1

and

L(w, φ2) =
∏
p

n∏
i=1

(1− βp,ip−w)−1,

respectively, then the Euler product for the Rankin-Selberg L-function is

L(w, φ1 × φ2) =
∏
p

n∏
i=1

n∏
j=1

(1− αp,iβp,jp−w)−1

Proof. See Dorian’s book – don’t think it was covered in class.

Remark 15.5. When you work adelically, you don’t see the L-function coefficients - you only see the Euler
product. Hence if you want to work with Euler products, its better to work adelically.

Dorian never stated this is what we trying to prove in class, but we have the functional equation of the
Rankin-Selberg L-function.

Proposition 15.6. If φ1, φ2 are of Langlands parameters (α1, . . . , αn) and (β1, . . . , βn), respectively, with
completed L functions

L∗(w, φ1) = π−
nw
2

n∏
i=1

Γ

(
w − αi

2

)
L(w, φ1)

and

L∗(w, φ2) = π−
nw
2

n∏
i=1

Γ

(
w − βi

2

)
L(w, φ2),

then L(w, φ1 × φ2) has meromorphic continuation to all w ∈ C, with at most a simple pole at s = 1 with
residue proportional to 〈φ1, φ2〉, and we have the completed Rankin-Selberg L-function

L∗(w, φ1 × φ2) = π−
n2s

2

n∏
i=1

n∏
j=1

Γ

(
s− αi − βj

2

)
L(w, φ1 × φ2)

with functional equation
L∗(w, φ1 × φ2) = L∗(1− w, φ1 × φ2).
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Proof. To compute the functional equation of the L-function, like the classical GL(2) case, we will want to
use the inner product 〈

φ1, φ2EPn−1,1(g, s)
〉

=

ˆ
Γn\hn

φ1(g)φ2(g)EPn−1,1(g, s) dg .

Remark 15.7. Note that this matches exactly what we expect for GL(2) (the Eisenstein series is just the
standard GL(2) Eisenstein series).

We need to apply unfolding, but here we will need to unfold twice (once for the Eisenstein series, and once
for the Fourier expansion of GL(n) Maass forms). First, unfolding the Eisenstein series definition gives

ˆ
Pn−1,1\hn

φ1(g)φ2(g)|g|s1+1/2
Pn−1,1

dg .

Now, we can write

g =

(
g′

1

)
1 r1

. . .
...

1 rn−1

1

 .

Thus we can take the union ⋃
γ∈Un−1(Z)\SL(n−1,Z)

(
γ

1

)
(Pn−1,1\hn) ∼= Un(Z)\hn.

The left union appears in the Fourier expansion of Maass forms. Working this out gives

〈
φ1, φ2EPn−1,1(g, s)

〉
=

∑
(m1,...,mn−1)

ˆ
Un(Z)\hn

φ1(g)
Aφ2

(m1, . . . ,mn−1)

∗
W (g)|g|s1+1/2 dg .

The Whittaker function contains an exponential function, and hence picks off the corresponding coefficient
in φ1. This gives

∞∑
m1=1

· · ·
∞∑

mn−1=1

Aφ1
(m1, . . . ,mn−1)Aφ2

(m1, . . . ,mn−1)∏n−1
k=1 m

k(n−k)
k

ˆ ∞
0

. . .

ˆ ∞
0

Wα(My)Wβ(My)(det y)s1+1/2d∗y,

where α and β are the Langlands parameters for φ1 and φ2, respectively, andM =


m1 . . .mn−1

. . .

m1

1

.

By a change of a variables, this becomes a product of the Rankin-Selberg L-function and the Mellin transform
of a product of Whittaker functions, which by a result of Eric Stade is a product of Gamma factors, and this
result, along with the meromorphic continuation/functional equation of EPn−1,1

(g, s), gives the functional
equation as desired. For more details, see Dorian’s book (section 12.1).
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16 Lecture 16 - 3/27/25

16.1 Normalized Whittaker Function

Today we write down the best definition of a Whittaker function.

Definition 16.1. Let α = (α1, . . . , αn) be a Langlands parameter. Then we define the normalized Whit-
taker function

Wα(g) =
∏

1≤j<k≤n

Γ
(

1+αj−αk
2

)
π

1+αj−αk
2

ˆ
Un(R)

|wnug|α+ρB
B ψ1,...,1(u) du ,

where du =
∏

1≤j<k≤n duij, Bn is the Borel subgroup, and

wn =


1

1
. . .

1


be the long element of the Weyl group.

Remark 16.2. We can replace the Jacquet-Whittaker functions in the previous Fourier expansion for the
Maass forms with these normalize ones; hence the Fourier coefficients will differ by the product of the Γ
factors and the πs. This doesn’t affect any theorems, as this product is a constant independent of which
coefficient is chosen. This choice, however, will affect the value of the ”first coefficient” because of different
normalizations.
We will make this change from now on; i.e. all our Fourier coefficients will divided by the product of these
Gammas and multiplied by the πs from what we had before.

Let σ ∈ Sn be a permutation, and let σ(α) = (ασ(i))
n
i=1.

Proposition 16.3. The functional equation of the Whittaker function is

Wσ(α)(g) = Wα(g).

Sketch. The power function only depends on the diagonal elements. A permutation of the α hence corre-
sponds to permuting the diagonal elements. One can also express this as a conjugation by an element of the
Weyl group; it suffices to prove the functional equation for permutations that correspond to a swap of two
adjacent elements, which will reduce to essentially the GL(2) case. For more details, the proof can be found
in Dorian’s book (although written in spectral rather than Langlands function).

Remark 16.4. The generic representations are very important, and by definition have Whittaker functions
(at the archimedean place, which corresponds). The choice of the Γ factors are necessary to show that the
Whittaker function never vanishes for all choices of Langlands parameters, which is needed for the generic
representations.

16.2 First Coefficient of Langlands Eisenstein series

Our goal is to compute the first coefficient for every Langlands Eisenstein series. To do so, we’ll need to
compute the first coefficient for any Maass forms, as Langlands Eisenstein series are induced by Maass forms.
Last time, we talked about the Mellin transform of the product of two Whittaker functions.

Theorem 16.5 (Stade). For s ∈ C,

ˆ ∞
0

. . .

ˆ ∞
0

Wα(y)Wβ(y) det(y)
s

dy =

∏n
j=1

∏n
k=1 Γ

(
s+αj−βk

2

)
2π

sn(n−1)
2 Γ

(
ns
2

)
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where y is the usual diagonal matrix


y1 . . . yn−1

. . .

y1

1

 and dy =
∏n−1
k=1

dyk

y
k(n−k)+1
k

. Here note that

(det y)s =
∏n−1
j=1 y

(n−j)s
j .

Recall last time, we considered s = (s1, s2) with (n− 1)s1 + s2 = 0, and we showed that

ζ(n(s1 + 1/2))
〈
φ1, φ2EPn−1,1

(∗, s)
〉

=

∞∑
m1=1

· · ·
∞∑

mn−1=1

Aφ1
(m1, . . . ,mn−1)Aφ2

(m1, . . . ,mn−1)

(mn−1
1 mn−2

2 . . .mn−1)s1+1/2

〈
Wαφ1

,Wαφ2
det(·)s1+1/2

〉
=Aφ1

(1, . . . , 1)Aφ2(1, . . . , 1)L(s1 + 1/2, φ1 × φ2)
〈
Wαφ1

,Wαφ2
det(·)s1+1/2

〉
,

where the second inner product is given to us by the result of Stade. Note that implicitely we assume
normalized coefficients to get the L-function, which explains the Aφ1

(1, . . . , 1)Aφ2
(1, . . . , 1) term. We can

now use this to get information about the first coefficient of a Maass form:

Theorem 16.6. Let φ be a Maass form for SL(n,Z) with Langlands parameter α = (α1, . . . , αn). Then for
some constant cn depending only on n,

|Aφ(1, . . . , 1)|2 =
cn 〈φ, φ〉

L∗(1,Ad φ)
,

where

L(w,Ad φ) =
L(w, φ× φ)

ζ(w)

and

L∗(w,Ad φ) =

 ∏
1≤j 6=k≤n

Γ

(
1 + αj − αk

2

)L(1,Ad φ)

Proof. EPn−1,1(g, s) has poles at s = ±1/2. Suppose R = Ress=1/2EPn−1,1
(g, s) (one can show that this

residue does not depend on g). Then

〈φ, φ〉 =

ˆ
SL(n,Z)\hn

|φ(g)|2
Ress=1/2E(g, s)

R
dg .

On the other hand, using the inner product computation from before to the RHS and taking the residue at
s1 = 1/2 gives

|Aφ(1, . . . , 1)|2

R
Ress1=1/2

(
L(s1 + 1/2, φ× φ)

ζ(n(s1 + 1/2))
〈STADE〉

)
.

Applying Stade’s formula finishes the proof.

Remark 16.7. If we normalize φ such that 〈φ, φ〉 = 1, we get a simpler formula – we’ll make this assumption
later.

Remark 16.8. The functional equation adelically only depends on the Langlands parameters at ∞. Then
the minimal parabolic Eisenstein series can be used to determine the functional equation for any Maass form
– the Gamma factors are exactly the same. The only thing that changes is the pth coefficient. This can be
done on any Chevellay group. Dorian calls this the template method – for more details, see this paper of
Goldfeld, Miller, and Woodbury.

We will use the template method to get the first coefficient of every parabolic Eisenstein series. We’ll use
the Borel Eisenstein series as the template. One can do this instead with the Bruhat decomposition and
Kloosterman sums, but that requires a tedious computation.
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16.3 First Coefficient of Borel Eisenstein Series

Let s = (s1, . . . , sn), and recall that we have the Borel (minimal parabolic) Eisenstein series

EBn(g, s) =
∑

γ∈(Bn∩Γn)\Γn

|γg|s+ρBn .

One can show that we have the first coefficient (due to Selberg)

AEBn ((1, . . . , 1), s) = cn
∏

1≤j<k≤n

ζ∗(1 + sj − sk)−1.

A (adelic) proof can be found in this paper of Goldfeld, Miller, and Woodbury. This formula will be the
template for other first coefficients of Eisenstein series. To do so, however, we need to know the Langlands
parameters of the most general Langlands Eisenstein series.
Let Pn1,...,nr be a parabolic subgroup, (s1, . . . , sr) = s ∈ Cr, and Φ = φ1 ⊗ · · · ⊗ φr, where each φi is an
SL(ni,Z) Maass form. Then

EPn1,...,nr
,Φ(g, s) =

∑
γ∈(Pn1,...,nr

∩Γn)\Γn

Φ(γg)|γg|s+ρPn1,...,nr
.

Assume that 〈φi, φi〉 = 1 for all i, and suppose each φj has Langlands parameter α(j) = (αj,1, . . . , αj,nj ).

Proposition 16.9. The Langlands parameters αP,Φ(s) of EPn1,...,nr ,Φ
are

(α1,1 + s1, . . . , α1,n1
+ s1, α2,1 + s2, . . . , α2,n2

+ s2, . . . , αr,1 + sr, . . . , αr,nr + sr)

Proof. We need to prove that
EPn1,...,nr

,Φ(∗, s)

has the same eigenvalue of all GL(n,R) invariant differential operators as

| ∗ |αP,Φ(s)+ρBn
Bn

.

One can in fact show that
| ∗ |

s+ρPn1,...,nr

Pn1,...,nr
= | ∗ |αP,Φ(s)+ρBn

Bn

by checking diagonal elements.
Taking care of the Maass forms requires a brute force computation.

Remark 16.10. How does the template method work? Assume that we have an induced Maass form Φ.
The first thing to do with is to replace Φ with a Borel Eisenstein series with the same Langlands parameter.
Once this is done, the new object will be a minimal parabolic Eisenstein series for some choice of Langlands
parameters. Computing these will allow us to compute its first coefficient, up to some normalization factor.
What is this factor? Since we normalized by 〈φi, φi〉 = 1, we will need to multiply by some factor corre-
sponding to the adjoint L-function. Hence the first coefficient will correspond to a product of completed ζ
functions and adjoint L-functions.

Next time, we will perform this technique in detail.
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17 Lecture 17 - 4/1/25

17.1 Template Method for First Fourier Coefficients of Eisenstein Series

Last time we discussed the template method, which serves as a simple algorithm for computing the first
coefficient of Langlands Eisenstein series. We describe it in more detail today.
Recall that given a parabolic subgroup Pn1,...,nr , s = (s1, . . . , sr) ∈ Cr with

∑
siri = 0, and Φ = φ1⊗· · ·⊗φr,

with each φj an SL(nj ,Z) Maass form, we have the Langlands Eisenstein series

EP,Φ(g, s) =
∑

(Γn∩P )\Γn

Φ(γg)|γg|s+ρP .

Take M = (m1, . . . ,mn−1) ∈ Zn−1. We have the character ψm(u) on u =


1 uij

1
. . .

1

 ∈ Un(R) of the

form
ψM (u) = e2πi(m1u1,2+···+mn−1un−1,n).

We can extract the mth coefficient via the integral

ˆ 1

0

. . .

ˆ 1

0

EP,Φ(ug, s)ψM (u) du = AP,Φ(M, s) ·Whittaker function.

Here the AP,Φ(M, s) is the mth coefficient. It splits into the form

AP,Φ(M, s) = AP,Φ((1, . . . , 1), s)λP,Φ(M, s),

where λP,Φ(M, s) is the Hecke eigenvalue, and AP,Φ((1, . . . , 1), s) is the first coefficient.

Remark 17.1. We only have a nice formula for the eigenvalue of Hecke operator in the case M =
(m, 1, . . . , 1), and the multiplicativity relations give all the other eigenvalues.

Here is the formula for the first coefficient of a Langlands Eisenstein series:

Theorem 17.2. Assume the φi are normalized such that 〈φi, φi〉 = 1. Then

AP,Φ((1, . . . , 1), s) = cn

 r∏
j=1

L∗(1,Ad φj)
− 1

2

 ∏
1≤j<k≤n

L∗ (1 + sj − sk, φj × φk)
−1

 ,

for some constant cn depending only on n, and if one of the nj or nk is 1, then the Rankin-Selberg L-function
is replaced by the completed L function for a Maass form, and if nj = nk = 1, the Rankin-Selberg L-function
is replaced the completed Riemann zeta function ζ∗(1 + sj − sk).

Recall that the adjoint L-function was defined to be

L(s,Ad φ) =
L(s, φ× φ)

ζ(s)

with completed adjoint L-function

L∗(1,Ad φ) =

 ∏
1≤j 6=k≤r

Γ

(
1 + αj − αk

2

)L(1,Ad φ)

Remark 17.3. The adjoint L-function at 1 is essentially the residue of the Rankin-Selberg Eisenstein series
at 1.
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Remark 17.4. Next week, we will talk about the Kuznetsov trace formula, which has a contribution from the
continuous spectrum - i.e. we will sum over integrals against the Eisenstein series. We want a power-saving
error term, so we’ll need to understand the size of the Eisenstein series coefficients - this is the motivation
for why we care about computing the first coefficient of the Eisenstein series.
We have good estimates for the Rankin-Selberg L-functions, but not for the adjoint L-functions. Conjec-
turally, we believe that c−εj � |L(1,Ad φj)| � cεj , where cj is the conductor of φj, which is essentially
the sum of the squares of the Langlands parameters/the Laplace eigenvalue. The conjecture (lower bound,
the hard part) is proved for GL(2) due to Iwaniec – the lower bound is essentially equivalent to proving an
analogue of the prime number theory for the adjoint L-function.

Remark 17.5. The proof of this template method uses the adelic perspective, and can be found in this paper
of Goldfeld, Miller, and Woodbury.

Let Bn be the Borel Eisenstein series; in this case, we know the first coefficient is due to Selberg (up to a
constant)

ABn((1, . . . , 1), s) =
∏

1≤j<k≤n

ζ∗(1 + sj − sk).

Recall that the Langlands parameters of the general Eisenstein series were of the form

(α1,1 + s1, . . . , α1,n1
+ s1, α2,1 + s2, . . . , α2,n2

+ s2, . . . , αr,1 + sr, . . . , αr,nr + sr),

where αj,k are the Langlands parameters of φj , and recall that

|Aφ(1, . . . , 1)|2 =
cn 〈φ, φ〉

L∗(1,Ad φ)

for some constant cn, or with the normalization of 〈φ, φ〉 = 1,

|Aφ(1, . . . , 1)| = cnL
∗(1,Ad φ)−1/2.

The main idea of the template method will be to replace Φ by an Eisenstein series with the same Langlands
parameters and same first coefficient.

Example 17.6. Consider the case 3 = 2 + 1. Here let Φ be a Maass form for GL(2) with Langlands
parameters (α1,−α1). Then we want to show that

AP2,1,Φ((1, 1), s) = cL∗(1,Ad Φ)−1/2L∗(1 + 3s1,Φ)−1

up to some constant c. Recall that s = (s1, s2) with 2s1 + s2 = 0.

1. Replace Φ by EB2(∗, (α1,−α1)), which has the same eigenvalues of the invariant differential operators
on h2 as Φ; i.e. has the same Langlands parameters. This creates a new Eisenstein series on P2,1

denoted EB3,new(g, s∗).

2. EB3,new has the same Langlands parameters as EP2,1,Φ, and it has to be a Borel Eisenstein series,
because it only involves powers of y! The Langlands parameters of EB3,new are (s∗1, s

∗
2, s
∗
3) = (α1 +

s1,−α1 + s1, s2).

3. We now use the formula for the first coefficient of the Borel Eisenstein series (up to a constant factor):

(ζ∗(1 + s∗1 − s∗2)ζ∗(1 + s∗1 − s∗3)ζ∗(1 + s∗2 − s∗3))
−1

= (ζ∗(1 + 2α1)ζ∗(1 + α1 + 3s1)ζ∗(1− α1 + 3s1))
−1
.

Now, we need to take into account that we want the Eisenstein series we replaced Φ with to have the
same first coefficient as Φ. The first coefficient of EB2

(∗, (α1,−α1)) is ζ∗(1 + 2α1)−1, but |Aφ(1, 1)| =
L∗(1,Ad φ)−1/2 (up to a constant). Hence we need to scale our factor by

L∗(1,Ad φ)−1/2

ζ∗(1 + 2α1)−1
(ζ∗(1 + 2α1)ζ∗(1 + α1 + 3s1)ζ∗(1− α1 + 3s1))

−1
.

The ζ∗(1 + 2α1) cancels, and we note that ζ∗(1 + α1 + 3s1)ζ∗(1− α1 + 3s1) appears in the completed
L-function for Φ. Thus we get the desired result.
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Example 17.7. Now consider the 4 = 2 + 2 case. Here we care about

EP2,2,φ1⊗φ2
(g, s);

recall that s = (s1, s2) with s1 + s2 = 0. In this case we want to show that the first coefficient is of the form

EP2,2,Φ = L∗(1,Ad φ1)−
1
2L∗(1,Ad Φ2)−

1
2L∗(1 + 2s1, φ1 × φ2)−1.

1. Replace φ1, φ2 by EB2(∗, α1)EB2(∗, α2), where (α1,−α1) are the Langlands parameters for φ1, and
α2 = (α2,−α2) are the Langlands parameters for φ2.

2. We get Borel Eisenstein series EB4,new(g, s∗), where s∗ = (s1 + α1, s1 − α1,−s1 + α2,−s1 − α2).

3. Using the formula for the first coefficient of the Borel Eisenstein series, up to a constant, we get first
coefficient (

ζ∗(1 + 2α1)ζ∗(1 + 2α2)
∏

ζ∗(1 + 2s1 ± α1 ± α2)
)−1

,

where the product is taken over all 4 possibilities. This product turns into L∗(1 + 2s1, φ1 × φ2)−1, up
to some constant.

Finally, we take into account the normalization, so we multiply by

L∗(1,Ad φ1)−1/2L∗(1,Ad φ2)−1/2

ζ∗(1 + 2α1)−1ζ∗(1 + 2α2)−1
.

This cancels the remaining Riemann zeta factors and gives the desired result.

This method generalizes similarly to any Langlands Eisenstein series.

Remark 17.8. Note that the first coefficient involves Rankin-Selberg L-products – one can use this method
to give another proof of the functional equation of Rankin-Selberg L-function (Shahidi-Kim).

Next time, we will complete the computation for all Fourier coefficients of Eisenstein series towards the
Kuznetsov trace formula.
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18 Lecture 18 - 4/3/25

18.1 General Fourier Coefficients for Langlands Eisenstein Series

Recall that we defined the normalized Whittaker functions

Wα(g) =
∏

1≤j<k≤n

Γ
(

1+αj−αk
2

)
π

1+αj−αk
2

ˆ
Un(R)

|wnug|
α+ρBn
Bn

e−2π(u1,2+···+un−1,n) du ,

where wn is the long element (1s on the anti-diagonal).
Today, we are interested in computing theMth Fourier-Whittaker coefficient of EP,Φ, whereM = (m1, . . . ,mn−1) ∈
Zn−1, P = Pn1,...,nr , and Φ = φ1⊗· · ·⊗φr, with φi a Maass form on SL(ni,Z). As we have discussed before,
this is determined by the integralˆ 1

0

. . .

ˆ 1

0

E(ug, s)ψM (u) du =
AP,Φ(M, s)∏n−1
k=1 m

k(n−k)
2

k

WαP,Φ(s)(M
∗g),

where αP,Φ(s) are the Langlands parameters of EP,Φ(s) and

M∗ =


m1 . . .mn−1

. . .

mn−1

1

 .

Remark 18.1. Note that this definition of the matrix differs from Dorian’s book because we do not swap
the order of the mi here, unlike in Dorian’s book. In addition, note that the normalized Whittaker function
makes the coefficients slightly different from Dorian’s book.

Remark 18.2. One can instead compute this integral directly with the Bruhat decomposition and Klooster-
man sums, but that is extremely tedious.

Here AP,Φ(M, s) is the Mth Fourier coefficient. Last time, we discussed that

AP,Φ(M, s) = AP,φ((1, . . . , 1), s)λP,Φ(M, s),

where λP,Φ(M, s) is a Hecke eigenvalue which can be computed via the Hecke operators Tm and the multi-
plicativity relations.
In particular, we will consider the simplest case

λP,Φ((m, 1, . . . , 1), s),

the eigenvalue of the Hecke operators Tm.

Theorem 18.3. λP,Φ((m, 1, . . . , 1), s) =
∑

c1···cr=m
ci∈N

r∏
j=1

λΦj (cj)c
sj
j .

Remark 18.4. As far as Dorian is aware, the first time this formula appeared was in his book.

Proof. We apply Tm to the power function times Φ, using that the Hecke operators are Γn invariant.
It is enough to compute

TmΦ(y)|y|s+ρP = m−
n−1

2

∑
c1···cn=m
ci,`<c`

r∏
i=1

ψi(mni(cy))|det(mni(cy))|s+ρ,

where c is the matrix appearing in the definition of the Hecke operator.
We can then rewrite the sum in terms of r blocks of size ni on the diagonal; each block of size ni with
determinant ci, and appearing in the definition of the Hecke operator Tci for SL(ni,Z), so the Tm operator
reduces to individual Tci operators on small blocks on the diagonal. We also need to sum over elements lying

above the ni × ni block, which do not affect the Hecke operator computation – these contribute c
n1+···+ni−1

i

to the comptutation. Working through everything gives the desired answer.
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18.2 Non-vanishing of L-functions via Eisenstein series

This result was first proved by Selberg for GL(2), although unpublished. It was then extended by Jacquet-
Shalika to Chevellay groups and general number fields.
We remark that ζ(1 + it) 6= 0 for t ∈ R is equivalent to the prime number theorem.

Theorem 18.5 (Jacquet-Shalika). Let φ be a Maass form for SL(n,Z) with functional equation for the
L-function invovling s→ 1− s. Then L(1 + it, φ) 6= 0 for all t ∈ R.

We state the functional equation for EP,Φ(g, s); given σ ∈ Sr, then for P = Pn1,...,nr , we define σP =
Pσ(1),...,σ(r), σφ = φσ(1) ⊗ · · · ⊗ φσ(r), and similarly for s = (s1, . . . , sr). Then EP,Φ(g, s) = EσP,σφ(g, σs).

Remark 18.6. Note here that this definition does not normalize the first coefficient to be 1.

One can also show that for the terms M = (m1, . . . ,mn−1), the functional equation also holds.

Example 18.7. In the SL(2,Z) case,

E(g, s) = y1/2+s1 +
ζ∗(2s1)

ζ∗(2s+ 1)
y1/2−s1 +

2
√
y

ζ∗(2s1 + 1)

∑
n 6=0

σ2s1(n)

|n|s1
Ks1(2π|n|y)e2πinx,

where s = (s1,−s1).
Assume ζ(1 + it0) = 0 for some t0 ∈ R. We note that

〈ζ∗(2s+ 1)E(∗, s), φ〉 = 0,

as the integral picks off the constant term of φ, which is 0.
Now, consider ζ∗(1 + it0)E(g, it02 ). Using that we have a zero, this means the the constant term is 0, using
the fact that ζ(1 − it0) = 0 by conjugation, and using the Riemann zeta functional equation. Moreover, we
note that as y →∞, the Eisenstein series does not vanish and is non-constant. Hence, ζ∗(1 + it0)E(g, it02 )
is a Maass form Φ.
As we discussed before, 〈Φ,Φ〉 = 0. However, this contradicts the assumption that Φ does not vanish. Hence,
we get a contradiction.

Remark 18.8. With this method, Sarnak can get an error term on the prime number theorem.

One can apply this technique more generally – see Dorian’s book for an example on EP2,1,Φ(g, s). In this

case, the first coefficient is L∗(1,Ad Φ)−1/2L∗(1 + 3s1,Φ)−1, so everything is multiplied by L∗(1 + 3s1,Φ).
We can do something similar, letting s1 = it0/3.
Next time we will do the Kuznetsov trace formula.
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19 Lecture 19 - 4/8/25

The Kuznetsov trace formula is obtained from taking two Poincare series and taking their inner product.
One way to evaluate this is by taking the spectral expansion of one of the Poincare series and unraveling the
other series, giving the “spectral side” of the trace formula. The other way is to take the Fourier expansion
of one of the Poincare series and unravel the other series, giving the “geometric side”.

19.1 Poincare Series

Definition 19.1. Let P0 : R → C be a test function such that P0(y) � y1+ε when 0 < y ≤ 1, and � y−ε

when 1 ≤ y. Moreover, letting u =

(
1 u1

1

)
, define ψ(u) = e2πiu1 . Let M =

(
m 0
0 1

)
with m ∈ Z nonzero.

Let Γ = SL(2,Z) and Γ∞ be the Borel subgroup. Then

PM (g, P0) =
∑

γ∈Γ∞\Γ

P (Mγg)ψ(Mγg),

where

P

((
y x
0 1

))
= P0(y)

is a function P : h2 → C.

19.2 Kuznetsov Trace Formula for SL(2,Z)
Consider two Poincare series PM (g, P0) and QN (g,Q0), with m,n nonzero. We are interested in the inner
product 〈

PM (∗, P0), QN (∗, Q0)
〉

=

ˆ
Γ\h2

PM (g, P0)QN (g,Q0)
dxdy

y2
,

where g =

(
y x
0 1

)
.

As mentioned before, we evaluate this in two ways.

1. We use the spectral expansion of PM and unravel QN , giving the spectral side of the KTF.

2. Use the Fourier expansion of PM and unravel Qn, giving the geometric side of the KTF.

Remark 19.2. The Selberg trace formula is similar - breaking up SL(2,Z) via conjugacy classes or double
cosets to get two sides.

19.3 Spectral side

Let {ηj}j=1,2,3,... be an orthonormal basis of Maass forms for SL(2,Z). Then the spectral decomposition
tells us

PM (g, P0) =

∞∑
j=0

〈
PM (∗, P0), ηj

〉
ηj(g) +

1

4πi

ˆ
Re(s1)=0

〈
PM (∗, P0), E(∗, s)

〉
E(g, s) ds1

where here s = (s1,−s1) are Langlands parameters, explaining why the integral is over Re(s1) = 0 (rather
than 1/2).
Hence, we get that〈

PM (g, P0), QN (g,Q0)
〉

=

∞∑
j=0

〈
PM (∗, P0), ηj

〉 〈
ηj(g), QN (g,Q0)

〉
+

1

4πi

ˆ
Re(s)=0

〈
PM (∗, P0), E(∗, s)

〉 〈
E(∗, s), QN (∗, Q0)

〉
ds1

66



Austin Lei

To understand this, we need to understand〈
PM (∗, P0), ηj

〉
=

ˆ
Γ\h2

PM (g, P0)ηj(g)
dxdy

y2
.

Using the summation definition of PM (g, P0) and making the change of variables g → γ−1(g), we get∑
γ∈Γ∞\Γ

ˆ
γ−1·(Γ\h2)

P0(Mg)ψ(Mg)
dxdy

y2
=

∑
γ∈Γ∞\Γ

ˆ
γ−1·(Γ\h2)

P0(Mg)ψ(Mg)
dxdy

y2

=

ˆ ∞
y=0

ˆ 1

x=0

P0(My)e2πimxηj

((
y x
0 1

))
dx dy

h2

=

{
0 j = 0´∞
y=0

´ 1

0
e2πimxηj(x+ iy) dxP0(my)dy

y2 ,

as the integral over x picks off the mth coefficient of ηj , and m is nonzero. The j > 0 term gives

Aj(m)

ˆ ∞
0

√
yKirj (2πmy)P0(my)

dy

y2
.

Here Aj(m) is the mth coefficient of ηj , which splits as Aj(1)λj(m). We also need
〈
PM , E(∗, s)

〉
, which

evaluates as

A(m, s1)
√
m

ˆ ∞
0

P0(y)Ks1(2πy)
dy

y3/2

where the
√
m comes from a change of variable. Here let

P ]0(irj) :=

ˆ ∞
0

P0(y)Ks1(2πy)
dy

y3/2
,

where ηj has Langlands parameter (irj ,−irj) and Laplace eigenvalue 1
4 + r2

j = λj . Plugging these equations
in the spectral side gives

〈
PM (∗, P0), QN (∗, Q0)

〉
=
√
mn

∞∑
j=1

Aj(m)Aj(n)P ]0(irj)Q
]
0(irj) +

√
mn

4π

ˆ i∞

−i∞
A(m, s1)A(n, s1)P ]0(s1)Q]0(s1) ds1 .

Remark 19.3. Note that SL(2,Z) Maass forms are self-dual (in particular, the Hecke operators are self-
adjoint) to get that the Hecke eigenvalues λj are real. Hence, some of the conjugates on the right hand side
can be simplified.

19.4 Geometric Side

We move to the geometric side, which is harder to compute.
The classical version of the Poincare series is given by

PM (g, P0) = P0(m)e2πimx +

∞∑
c=1

∑
d∈Z

(c,d)=1

P0

(
my

|cz + d|2

)
e2πimRe( az+bcz+d ),

where here a and b are chosen such that

(
a b
c d

)
= SL(2,Z). However, for each choice of (c, d), the summation

does not depend on the choice of (a, b).
On the RHS, there will be Kloosterman sums

S(m,n; c) =

c∑
a=1

(a,c)=1
ad≡1 (mod c)

e2πi( am+nd
c ).
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Remark 19.4. Andre Weil proved the bound of � c1/2+ε as an application of the Riemann Hypothesis for
curves – this is why this side is known as the “geometric side”.

We can compute the nth Fourier coefficient of PM :

Lemma 19.5.

ˆ 1

0

PM (g, P0)e−2πinx dx = δm,nP0(my) + y

∞∑
c=1

S(m,n; c)

ˆ ∞
−∞

P0

(
my

c2y(x2 + 1)

)
e
−2πix

(
m

c2y(x2+1)
+ny

)
dx .

Sketch. We have that

ˆ 1

0

PM (g, P0)e−2πinx dx = δm,nP0(my) +

ˆ 1

0

∞∑
c=1

∑
d∈Z

gcd(c,d)=1

P0

(
my

|cz + d|2

)
e2πimRe( az+bcz+d )e−2πinx dx ,

then computation is done. More details can be found in Dorian’s trace formula notes on his website.

We now apply this formula and unravel Q. Let

I(y) = y

∞∑
c=1

S(m,n; c)

ˆ ∞
0

P0

(
my

c2y(x2 + 1)

)
e
−2πix

(
m

c2y(x2+1)
+ny

)
dx .

Specifically, unraveling gives

〈
PM (∗, P0), QN (∗, Q0)

〉
=

ˆ ∞
y=0

ˆ 1

x=0

PM (g, P0)Q0(ny)e−2πinx dxdy

y2

=

ˆ ∞
0

(δm,nP0(my) + I(y))Q0(ny)
dy

y2
.

Hence, the Kuznetsov trace formula comes out as

√
mn

∞∑
j=1

Aj(m)Aj(n)P ]0(irj)Q
]
0(irj) +

√
mn

4π

ˆ i∞

−i∞
A(m, s1)A(n, s1)P ]0(s1)Q]0(s1) ds1

=δmn

ˆ ∞
0

P0(my)Q0(ny)
dy

y2
+

∞∑
c=1

S(m,n; c)

ˆ ∞
0

ˆ ∞
−∞

P0

(
m

c2y(x2 + 1)

)
Q0(ny)e

−2πix
(

m
c2y(x2+1)

+ny
)

dxdy

y
.

Here we note that the main term is the first term on the right hand side.

19.5 Application of Kuznetsov Trace Formula to Weyl’s Law

We want to show that ∑
λj≤T

1 ∼ cT.

We will end up showing that ∑
λj≤T

1

L(1,Ad φj)
∼ cT,

and a method of Iwaniec will show that this is equivalent.

Remark 19.6. We can remove the adjoint L-functions for GL(2) and GL(3), but not in general.

Choose m = n = 1. Then |Aj(1)|2 = c
L∗(1,Ad ηj)

= c

L(1,Ad ηj)Γ
(

1+2irj
2

)
Γ
(

1−2irj
2

) .

Recall that

P ]0(ir) =

ˆ ∞
0

P0(y)Kir(2πy)
dy

y3/2
.
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We have inverse transform (the Kontorovich-Lebedev transform)

P0(y) =
1

π

ˆ ∞
−∞

P ]0(ir)
√
yKir(2πy)

dr

Γ(ir)Γ(−ir)

Let R ≥ 5 and T →∞. Consider test function of the form

P ]T,R(W ) = e−
W2

2T2 Γ

(
2 +R+ 2W

4

)
Γ

(
2 +R− 2W

4

)
.

Note that by Stirling’s formula,

Γ
(

2+R+2W
4

)
Γ
(

2+R−2W
4

)
Γ
(

1+2irj
2

)
Γ
(

1−2irj
2

) ∼
√

2πrRj

so on the spectral side, the main term becomes

∞∑
j=1

|Aj(1)|2|P ]T,R(irj)|2 =
√

2πe1/4c

∞∑
j=1

e−λj/T
2 λRj
L(1,Ad ηj)

∼ c0
∑
λ≤T 2

1

L(1,Ad ηj)
,

where the approximation comes from partial summation and from using the fact that e−λj/T
2

roughly counts
λ up to T 2. The main error term comes from the Eisenstein series, the error term on the spectral side.
To evaluate the main term on the geometric side, we will need to use Plancherel’s formula. We will do this
next time.

69



Austin Lei

20 Lecture 20 - 4/10/25

20.1 Main Term in GL(2) Kuznetsov Trace Formula

Recall that we had a smooth test function P0 : R≥0 → C with the growth condition |P0(y)| � y1+ε if
0 < y ≤ 1 and y−B if 1 < y. We also have the Kontorovich-Lebedev transform

P ]0(ir) :=

ˆ ∞
0

P0(y)
√
yKir(2πy)

dy

y2

and the inverse transform

P0(y) =
1

π

ˆ ∞
−∞

P ]0(ir)
√
yKir(2πy)

dr

|Γ(ir)|2
.

Last time, we showed that the main term M of the Kuzentsov trace formula was

M = m

ˆ ∞
0

|P0(y)|2 dy

y2
.

Theorem 20.1 (Plancherel). ˆ ∞
0

|P0(y)|2 dy

y2
=

1

π

ˆ ∞
−∞
|P ]0(ir)|2 dr

|Γ(ir)|2
.

Proof. ˆ ∞
0

|P0(y)|2 dy

y2
=

ˆ ∞
y=0

P0(y)

ˆ ∞
r=−∞

1

π
P ]0(ir)

√
yKir(2πy)

dr

|Γ(ir)|2
dy

y2

=
1

π

ˆ ∞
r=−∞

P ]0(ir)

ˆ ∞
y=0

P0(y)
√
yKir(2πy)

dy

y2

dr

|Γ(ir)|2

=
1

π

ˆ ∞
r=−∞

P ]0(ir)P ]0(ir)
dr

|Γ(ir)|2
,

as desired, where we use that Kir = K−ir.

Hence to choose a test function P0, it is sufficient to consider the conditions on P ]0 . Last time, we chose

P ]T,R(ir) := e−
r2

2T2

∣∣∣∣Γ(2 +R+ 2ir

4

)∣∣∣∣2 ,
where T →∞ and r ≥ 5. Then the main term in this case is

M =
m

π

ˆ ∞
−∞
|P ]T,R(ir)|2 dr

|Γ(ir)|2

=
2m

π

ˆ ∞
0

e−
r2

T2

∣∣Γ ( 2+R+2ir
4

)∣∣4
|Γ(ir)|2

dr .

When r � T , we get exponential decay, so the main contribution comes from r ∼ T . Applying Stirling’s
formula

|Γ(σ + it)| ∼
√

2π|t|σ−1/2e−
π
2 |t|

gives the asymptotic as T →∞

M ∼ 2m

π

ˆ ∞
0

e−
r2

T2
((1 + r)R/4)4

((1 + r)−1/2)2
dr

∼ 2m

π

ˆ ∞
0

e−
r2

T2 (1 + r)R+1 dr

∼ TR+2 2m

π

ˆ ∞
0

e−r
2

(
1

T
+ r

)R+1

dr

∼ c0TR+2
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where the final integral goes to a constant as T →∞ and the transformation r → rT is used. TODO: This
calculation doesn’t seem quite right.
From the spectral side, this is equivalent to a summation of the form

∑
λ≤T aλλ

R. Via Abel partial summa-

tion, one can transform the this into information about
∑
λ≤T aλ, and it turns out to be asymptotic to T 2;

i.e. the dependence on R goes away.

20.2 Orthogonality for Fourier Coefficients of Maass Forms

We spend some time discussing the history of results in this direction.

• In 1837, Dirichlet showed an orthogonality relation for Dirichlet characters χ (mod q)

1

φ(q)

∑
χ

χ(m)χ(a) = δa≡m (mod q).

One can think of Dirichlet characters as GL(1) automorphic forms/representations. Naturally, one can
ask if it is possible to extend this to higher GL(n).

• The first result in this direciton is from Bruggeman 1978:

lim
T→∞

4π2

T

∞∑
j=1

λj(m)λj(n)

cosh(πrj)
e−λj/T = δm=n,

where λj(m) is the mth Fourier coefficient of an SL(2,Z) Maass form φj with Langlands parameter
(irj ,−irj) and laplace eigenvalue λj = 1

4 + r2
j .

For GL(2) or higher, this is an infinite sum, so we need an exponential decay term for convergence.

• In 1984, Sarnak showed a similar result in his paper Statistical properties of eigenvalues of Hecke
operators.

• In 1997, both Conrey-Duke-Farmer (Distribution of Hecke eigenvalues) and J.P. Serre showed a result
for holomorphic modular forms (Repartition asymptotique des valeurs de l’operateur de Hecke) – these
were papers talking about the vertical Sato-Tate conjecture (fixing a prime, and averaging over a
family of modular forms and seeing how ap varies as the family changes), so these kind of orthogonality
relations come into play.

• The next result is from Fan Zhou, a student of Dorian’s:

Conjecture 20.2. Consider an orthonormal basis of Maass forms {φj}j=1,2,... for SL(n,Z), and each

φj has Langlands parameters α(j) = (α
(j)
1 , . . . , α

(j)
n ) with Hecke eigenvalues λj(k), for k = 1, 2, 3, . . . .

Let Lj = L(1,Ad φj) be adjoint L-functions, and let hT : Cn → C be a smooth test function with
support on eigenvalues 0 < λ(φj)� T .

Then ∑∞
j=1 λj(`)λj(m)hT (α(j))

Lj∑∞
j=1

hT (α(j))
Lj

= δ`=m +O(T−θ),

for some θ > 0.

• In the same year, the conjecture was proven for the first time for SL(3,Z) by Kontorovich and Dorian:

∑ λj(m)λj(`)
hT (α(j))
Lj∑∞

j=1
hT (α(j))
Lj

= δm=` +O(m`2T−2+ε).

This hT ends up being up some P ]T,R function. Simulatenously, a result like this was proven by Blomer.
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Remark 20.3. Applications of this are vertical Sato-Tate and Weyl’s law with a power-saving error
term. It is possible to get rid of the Lj weighting for SL(2,Z) and SL(3,Z), but it is unknown how to
do this for SL(4,Z) or higher. Conjecturally, λ−εj � Lj � λεj ; the lower bound is the bound that is
difficult to prove.

• In 2014, Blomer, Buttcane, and Raulf got improvements on the orthogonal relation in SL(3,Z).

• How about for SL(4,Z)? Stade-Woodbury-Dorian proved Fan Zhou’s conjecture for SL(4,Z) in 2021.

• Also in 2021, Matz-Templier, Matz-Finis proved Zhou’s conjecture for all SL(n,Z) with n ≥ 2 using the
Selberg trace formula, but with worse error term. The residual spectrum appears in the computation
for Selberg trace formula, but not in the Kuznetsov trace formula, as the Poincare series are orthogonal
to the residual spectrum.

• In 2024, Stade-Woodbury-Dorian, Nelson-Jana, Blomer all have results for all GL(n) using the KTF.
Next time, Dorian will give the main idea of the approach in his paper. Nelson-Jana/Blomer avoid
contributions by the continuous spectrum by a theorem of Kazhdan. The error terms are all very weak.

• Stade-Woodbury-Dorian prove Zhou’s conjecture with very strong power savings for SL(4,Z) and
SL(5,Z). For SL(n,Z), for n > 5, they prove Zhou’s conjecture (with power-savings error term) with
two conjectures:

– Lower bound conjecture for L(s, φj ×φ`) on Re(s) = 1. If φj has Langlands parameters α(j) with
analytic conductor

c(φj) =

n∏
i=1

(1 + |α(j)
i |),

then we want
L(1 + it, φj × φ`)� (c(φj)c(φ`))

−ε−1(1 + |t|)−ε2 .

Remark 20.4. This appears in the Eisenstein series contribution in the trace formula, and can
be proven up to SL(5,Z). If we knew φj × φ` was automorphic on SL(j × `,Z) (a conjecture of
Langlands), then this could be proven.

Remark 20.5. Qiao Zhang (another student of Dorian’s) proved that for φ on SL(n,Z) and φ′

on SL(n′,Z),

L(1 + it, φ× φ′)� (c(φ)c(φ′))−θn,n′ (2 + |t|)−
nn′

2

(
1− 1

n+n′

)
ε

where θn,n′ = n+ n′ + ε.

If one can improve this by dividing the exponents by a factor of 2, then Dorian’s result would hold.

– Ishi-Stade conjecture:
´∞

0

√
yKir(y)ys dy

y ∼ Γ
(
s+ir

2

)
Γ
(
s−ir

2

)
satsifies a functional equation s →

s + 1. The conjecture is that a functional equation of this type holds for all SL(n,Z) Whittaker
functions. For SL(3,Z), you get a product of six gamma factors over one gamma, and this
conjecture holds. This is proven up to SL(7,Z).

Next time, we will do the Kuznetsov trace formula for SL(n,Z), both the spectral and main term.
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21 Lecture 21 - 4/15/25

I am very busy, so these notes will be unedited and contain more mistakes than usual. I hope to get them
edited by the end of May.

21.1 Whittaker Transform

This will be the generalization of the Kontorovich-Lebedev transform for GL(n).

Definition 21.1. The vector space of Langlands parameters is denoted

Hn := {α = (α1, . . . , αn) ∈ Cn | α1 + · · ·+ αn = 0} .

We once again redefine the Whittaker functions; Dorian is revising his book which leads to small revisions
in definitions.

Definition 21.2. Let α ∈ Hn. Then for g ∈ hn, with Iwasawa decomposition g = xy, the normalized
Whittaker function for SL(n,Z) is defined by

W±α (g) =
∏

1≤i<j≤n

Γ
(

1+αj−αk
2

)
π

1+αj−αk
2

ˆ
Un(R)

|wnug|α+ρB
B ψ1,...,1,±1(u) du .

This function is invariant under any permutation of Langlands parameters – i.e. it satisfies a functional
equation. Here we use + for the even Maass forms and − for odd Maass forms.

Remark 21.3. If g is a diagonal matrix, we can assume a + sign; only the x-coordinates matters for the ±
sign. In that case, we drop the ± sign.

Proposition 21.4. Let f : Rn−1
>0 → C. Then we define the Whittaker transform f ](Hn)→ C by

f ](α) =

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

f(y)Wα(y)

n−1∏
k=1

dyk

y
k(n−k)+1
k

,

with inverse transform

f(y) =
1

πn−1

ˆ
α∈Hn

Re(αj)=0

f ](α)Wα(y)∏
1≤k 6=`≤n Γ

(
αk−α`

2

) dα .

Proof. Proof can be found in Dorian’s paper with Alex Kontorovich.

21.2 Poincare Series for SL(n,Z)
Remark 21.5. These definitions may vary based on source – could include/not include test function function,
power function, character.

The ingredients we’ll want:

• M = (m1, . . . ,mn−1) ∈ Zn−1 and M∗ =


m1m2 . . .mn−1

m1m2 . . .mn−2

. . .

m1

1

.

• ψM (u) = e2πi(m1u1,2+···+mn−1un−1,n)

• A smooth test function p : hn → C satsifying p(xy) = p(y).

Definition 21.6.
PM (g) =

∑
γ∈Un(Z)\SL(n,Z)

p(M∗γg)ψM (γg),

where here ψM (xy) = ψM (x).
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21.3 Spectral Expansion of SL(n,Z) Kuznetsov Trace Formula

Let F ∈ L2(SL(n,Z)\hn), orthogonal to the constant function. Then we have

F (g) =

∞∑
j=1

〈F, φj〉φj(g) +
∑

n=n1+···+nr
P=Pn1,...,nr

∑
Φ=φi1⊗···⊗φir

cP

ˆ
n1s1+···+nrsr=0

Re(sj)=0

〈F,EP,Φ(∗, s)〉EP,Φ(g, s) ds ,

where the φj are an orthonormal basis of Maass forms.
We need to compute 〈

PM , φj
〉

=

ˆ
Γn\hn

PM (g)φj(g) dg .

Assume that M is chosen such that none of the mis are 0; hence, there is no contribution from the residual
spectrum (i.e. there is no residual spectrum in the spectral decomposition of the Poincare series).
Unraveling the sum gives

ˆ
Un(Z)\hn

P (M∗y)ψM (x)φj(xy)
∏

1≤i<j≤n

dxi,j

n−1∏
k=1

dyk

y
k(n−k)+1
k

.

Note that we can view split the integral, and the integral over x correspond to picking off the Mth coefficient
of φj , as we know that we have Fourier expansion

φj(g) =
∑

γ∈Un−1(Z)\Γn−1(Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 6=0

Aφj (M)∏n−1
k=1 m

k(n−k)/2
k

W sign(mn−1)
α

(
M∗

(
γ

1

)
g

)
.

Hence 〈
PM , φj

〉
= Aφj (M)

(
n−1∏
k=1

m
k(n−k)

2

k

)
P ](α(j)),

where α(j) are the Langlands parameters of φj ; along the way there will be a change of variables yi 7→ yi/mi.
Similarly, 〈

PM , EP,Φ(∗, s)
〉

= AP,Φ(M, s)

(
n−1∏
k=1

m
k(n−k)

2

k

)
P ](αs)

where αs is the Langlands parameter of EP,Φ(s).
Running through the computation gives〈

PM , PM
〉

= ∗
∑
|Aφj (M)|2|P ](α(j))|2,

which we can write as C +E, where C is what we want for the orthogonal relation and E is the continuous
spectrum. Looking at the Fourier expansion will give M + K, where M is the main term and K is the
geometric term (primarily Kloosterman sums). This will give the Kuznetsov trace formula.

Remark 21.7. This gives better results than the Arthur-Selberg trace formula because they have to deal with
the residual spectrum.

21.4 Kloosterman sums for SL(n,Z)
Now, we’ll need to deal with the Kloosterman sums. We need the Bruhat decomposition for this:

Definition 21.8. Let n ≥ 2. Then we have the Bruhat decomposition

GL(n,R) = Bn(R)WnBn(R),

where Bn(R) =


∗ ∗
∗

. . .

∗

 and Wn is the Weyl group of GL(n,R).
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Proof. One can iteratively construct the decomposition using row/column operations corresponding to
Bn(R).

One can explicitely describe the decomposition, due to Friedberg:

Proposition 21.9. Every g ∈ GL(n,R) can be written in the form g = u1cwu2, where

c =


ε/cn−1

cn−1/cn−2

. . .

c2/c1
c1

 ,

with w ∈Wn, ε = det(w) det(g), and u1, u2 ∈ Un.

Remark 21.10. One must put stronger conditions on u1 and u2 for this to be unique (i.e. u1 ∈ Γw and u2

in the complement, which we define later).

Definition 21.11 (Kloosterman sums for SL(2,Z)). For SL(2,Z), we have the Kloosterman sum

S(m,n; c) =

c∑
a=1

(a,c)=1

e2πi( am+an
c ).

We have the Weil bound of � c1/2 + ε - equivalent to RH for an elliptic curve.
We’ll use the following notation: let Γn = SL(n,Z). For w ∈ Wn, let Γw = (w−1(Un(Z))Tw) ∩ Un(Z).
(w−1(Un(Z))Tw will correspond to matrices with 1 on diagonal, with some elements on the top still there,
over all possible rows/columns). Also, let Gw = UnwDnUn, where Dn is the set of diagonal matrices.

Definition 21.12 (Kloosterman Sum).

Sw(ψ,ψ′, c) :=
∑

γ∈Un(Z)\(Γn∩Gn)/Γw
γ=b1cwb2

ψ(b1)ψ′(b2).

Example 21.13. In the SL(2,Z) case, let c =

(
c−1
1 0
0 c1

)
, w =

(
0 −1
1 0

)
, and Γw =

(
1 ∗

1

)
= U2(Z). Let

b1 =

(
1 b′1/c1

1

)
and b2 =

(
1 b′2/c1

1

)
. Then for any γ ∈ SL(2,Z), we have the Bruhat decomposition

γ = b1cwb2,

where b′1b
′
2 ≡ 1 (mod c1). In this case,

Sw(ψ,ψ′, c) =
∑

b′1 (mod c)

ψ(b1)ψ′(b2),

where we choose M and N for our characters.

Next time we’ll continue the computation of the geometric side of the KTF.
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22 Lecture 22 - 4/17/25

I am very busy, so these notes will be unedited and contain more mistakes than usual. I hope to get them
edited by the end of May.

22.1 Kloosterman Sums

Recall last time we defined Kloosterman sums for SL(n): Letting

c =


1

cn−1
cn−1

cn−2

. . .
c2
c1

c1

 ,

Gw = UnwDNUn, and Γw = (w−1Un(Z)Tw) ∩ Un(Z), we have that

Sw(ψ,ψ′, c) =
∑

γ=b1cwb2
γ∈Un(Z)\Γn∩Gw/Γw

ψ(b1)ψ′(b2).

Example 22.1 (SL(3,Z) Kloosterman sum). Let c =

 1
c2

c2
c1

c1

, and w =

 −1
1

1

. TODO: is

the minus sign supposed to be there? For the long element, Γw = U3(Z). Let

b1 =

1 α2 α3

1 α1

1


and

b2 =

1 β2 β3

1 β1

1

 ,

both in U3(Q), and let γ = (γi,j)1≤i,j≤3 ∈ SL(3,Z). Then consider any γ ∈ U3(Z)\SL(3,Z) ∩ Gw/U3(Z).
Each γ can be represented in the form b1cwb2; one can solve for the coefficients of b1 and b2. One finds
that α1 = γ21

c1
, α2 = c1γ12−γ11γ32

c2
, α3 = γ11

c1
, β1 = c1γ23−γ21γ33

c2
, β2 = γ32

c1
, β3 = γ33

c1
. Letting ψM (u) =

e2πi(m1u1,2+m2u2,3) and analagously for ψN , we get that

Sw(ψM , ψN , c) =
∑

γ21,γ32 (mod c1)
c1γ12−γ11γ32 (mod c2)
c1γ23−γ21γ33 (mod c3)

e
2πi
(
m1

γ21
c1

+m2
c1γ12−γ11γ12

c2

)
e2πi(n1... ).

For more details, see Dorian’s book.

One can define the Kloosterman zeta function for s = (s1, . . . , sn−1) ∈ Cn−1, which converges for Re(s)
sufficiently large:

Z(ψ,ψ′, s) =

∞∑
c1=1

· · ·
∞∑

cn−1=1

Sw(ψ,ψ′, c)

cs11 . . . c
sn−1

n−1

.

Remark 22.2. Recall the Selberg conjecture for eigenvalues of Maass forms λj ≥ 1
4 . Selberg proved a bound

of 3
16 using properties of the Kloosterman zeta function.

Sarnak-Goldfeld (1983) showed a GL(2) Kloosterman zeta function bound.

|Z(ψ,ψ′, s)| � |s|1/2

Re(s)− 1
2

.

Remark 22.3. No bound like this has been shown for general GL(n) – it is an open problem.
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22.2 Properties of Kloosterman Sums

Here will briefly discuss some properties of Kloosterman sums.
Fix ψM , ψN , c, and c. One can show that there exists ψN ′ and ψN ′′ such that

Sw(ψM , ψN , cc
′) = Sw(ψM , ψN ′ , c)Sw(ψM , ψN ′′ , c

′).

Theorem 22.4 (Friedberg, 1987). Sw(ψM , ψN , c) 6= 0 iff w is of the form
Ii1

Ii2
. . .

Ii`

 ,

with each Iij an identity matrix.

22.3 Fourier Expansion of Poincare Series

Recall that we had
PM (g) =

∑
γ∈Un(Z)\SL(n,Z)

p(M∗γg)ψ(γg),

where p : hn → C is a test function with p(xy) = p(y). To compute the geometric side of the KTF, we need
to compute the Fourier coefficients of the Poincare series.

Theorem 22.5. Let Uw(Z) = (w−1Un(Z)w)∩Un(Z) and Uw(Z) = (w−1Un(Z)Tw)∩Un(Z) (and analogously
for R). Then

ˆ
Un(Z)\Un(R)

PM (ug)ψN (u)d∗u =
∑
w∈Wn

∞∑
c1=1

· · ·
∞∑

cn−1=1

Sw(ψM , ψN , c)Jw(g, ψM , ψN , c),

where Jw is the Kloosterman integral

Jw(g, ψM , ψN , c) =

(ˆ
Uw(R)

p(M∗cwu2g)ψM (wu2g)d∗u2

)(ˆ
Un(Z)\Uw(R)

ψM (u1)ψN (u1)d∗u1

)
.

TODO: There might be a mistake with the ψM terms – see next lecture for possible correct term.

Proof. One can write

ˆ
Un(Z)\Un(R)

PM (ug)ψN (u)d∗u =

ˆ
Un(Z)\Un(R)

∑
γ∈Un(Z)\SL(n,Z)

p(M∗γug)ψm(γug)ψN (u)d∗u.

Recall that Gw = UnDnwUn, and our sum over γ can be split into a sum over Un(Z)\(SL(n,Z)∩Gw) over all
w. Letting Γw = (w−1Un(Z)Tw) ∩ Un(Z), we can actually rewrite as sum over double coset representatives
of Un(Z)\(SL(n,Z) ∩Gw)/Γw. Hence our sum can be rewritten in the form∑

w∈Wn

∑
c

∑
b1,b2∈Un(Q)

b1cwb2∈Gw/Γw

∑
τ∈Γw

ˆ
Un(Z)\Un(R)

p(M∗b1cwb2τug)ψM (b1cwb2τug)ψN (u)d∗u.

One can show that p(M∗b1cwb2τug) = p(M∗cwb2τug), as M∗b1 = b′1M
∗ for some b1 ∈ Un(R), and using

that p(xy) = p(y). Moreover, one can show that

ˆ
Un(Z)\Un(R)

=

ˆ
Uw(Z)\Uw(R)

ˆ
Uw(Z)\Uw(R)

,
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using that Uw · Uw = Un. Using that ψM is multiplicative, and a transformation from u 7→ τ−1u that sums
over all shifts of Uw(Z)\Un(R). Hence our integral can be rewritten in the form∑

w∈W

∑
c

∑
b1,b2∈Un(Q)
b1cb2∈Gw/Γw

ψM (b1)

ˆ
Uw(Z)\Uw(R)

ˆ
Uw(R)

p(M∗cwb2ug)ψM (wb2ug)ψN (u)d∗u2d∗u1,

where u = u1u2 with u1 ∈ Uw(Z)\Uw(R) and u2 ∈ Uw(R). Making the transformation u1 7→ b−1
2 u1 and

splitting the integral, and summing over b1 and b2 gives

∑
w∈W

∑
c

Sw(ψM , ψN , c)

(ˆ
Uw(Z)\Uw(R)

ψM (u1)ψN (u1)d∗u1

)(ˆ
Uw(R)

p(M∗cwu2g)ψN (u2)d∗u2

)
.

Here we use the fact that wu1 = u′1w for some u′1 ∈ Un(R), since u1 ∈ Uw(R), to get rid of the u1 in the
p.

Hence the Nth Fourier coefficient of pM is of the form∑
w

∑
c

Sw(ψM , ψN , c)Jw(g, ψM , ψn, c).

On the geometric side of the Kuznetsov trace formula, we get inner products of the form〈∑
M

∑
w

∑
c

SwJw(g), PN

〉
.

Unraveling and summing over w gives Whittaker transforms of the Kloosterman sums. We can approximate
these using the trivial bound on Kloosterman sums.

Remark 22.6. The proof of the trivial bound for SL(n,Z) Kloosterman sums is actually difficult – it was
proven by Mark Reader.
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23 Lecture 23 - 4/22/25

I am very busy, so these notes will be unedited and contain more mistakes than usual. I hope to get them
edited by the end of May.

23.1 Geometric Side of KTF

We will normalize the Poincare series

PM (g) = bM
∑

γ∈Un(Z)\SL(n,Z)

p(M∗γg)ψM (γg),

where bM =
∏n−1
k=1 m

−k(n−k)/2
k , and p : hn → C and p(ug) = p(g) for all u ∈ Un(R), with M =

(m1, . . . ,mn−1) and M∗ as usual.
Last time, we stated the Fourier expansion:

ˆ
Un(Z)\Un(R)

PM (ug)ψN (u)d∗u =
∑
w∈Wn

∞∑
c1=1

· · ·
∞∑

cn−1=1

Sw(ψM , ψN , c)Jw(g, ψM , ψN , c),

where

Jw(g, ψM , ψN , c) =

ˆ
Uw(R)

p(M∗cwu2g)ψM (wu2g)ψN (u2)d∗u2

ˆ
Un(Z)\Un(R)

ψM (u′1)ψN (u1)d∗u1,

where u′1 = wu1w
−1 TODO: The last ψN should be conjugated? Does that ψM (u2) term exist?

Now on the spectral side of the Kuznetsov trace formula, we get that〈
PM , PN

〉
= C + E

where C is the cuspidal part

C =

∞∑
j=1

Aj(N)Aj(M)|P ](α(j))|2,

where φj is an orthonormal basis of Maass forms, with Aj(N) the Nth coefficient of φj and α(j) the Langlands
parameter of φj , and E is the Eisenstein part

E =
∑

Pn1,...,nr

cPn1,...,nr

∑
Φ=φ1⊗···⊗φr

ˆ
n1s1+···+nrsr=0

Re(s)=0

AP,Φ(N, s)AP,Φ(M, s)|P ](αP,Φ(s))|2,

where AP,Φ(N, s) is the Nth Fourier coefficient of EP,Φ.
Now, for the geometric side, we unravel PN and use the Fourier expansion of PM . We will show that〈

PM , PN
〉

= M +K,

where M is the main term and K is the Kloosterman term. Here

M = bMN

∞∑
c1=1

· · ·
∞∑

cn−1=1

SIn(ψM , ψN , c)

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

JIn(y, ψM , ψN , c)p(N∗y)

n−1∏
k=1

dyk

y
k(n−k)+1
k

,

and

K = bMN

∑
w 6=In∈Wn

∞∑
c1=1

· · ·
∞∑

cn−1=1

Ss(ψM , ψN , c)

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

Js(y, ψM , ψN , c)p(N∗y)

n−1∏
k=1

dyk

y
k(n−k)+1
k

.
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Proof. We have that

〈
PM , PN

〉
= bN

ˆ
Γn\hn

PM (g)

 ∑
γ∈Un(Z)\Γn

p(N∗γg)ψN (γg)

 d∗g

= bN

ˆ
Un(Z)\hn

PM (g)p(N∗g)ψN (g)d∗g

= bN

ˆ
Un(Z)\Un(R)

ˆ ∞
y1=0

. . .

ˆ ∞
yn

PM (uy)p(N∗uy)ψN (uy)d∗ud∗y

= bN

ˆ
Un(Z)\Un(R)

ˆ ∞
y1=0

. . .

ˆ ∞
yn

PM (uy)p(N∗y)ψN (u)d∗ud∗y,

where we use that uy = y′u for some diagonal matrix y′ (and similarly N∗u = u′N∗) and ψ is invariant
under diagonal matrices. Manipulating more gives

ˆ ∞
y1=0

. . .

ˆ ∞
yn

bN

ˆ
Un(Z)\Un(R)

PM (uy)ψN (u)d∗up(N∗y)

n−1∏
k=1

dyk

y
k(n−k)+1
k

.

Thus, using the Fourier expansion,〈
PM , PN

〉
= bMN

∑
w∈Wn

∞∑
c1=1

· · ·
∞∑

cn=1

Sw(ψM , ψN , c)Jw(y, ψM , ψN , c)p(N∗y)
dyk

y
k(n−k)+1
k

,

as desired.

The Kuznetsov trace formula is precisely

C = M +K − E,

where K − E is the error term. By choosing the right test function, we can get the orthogonality relation
on the LHS, as desired.

23.2 The Main Term of the KTF

One can show from the definition of Kloosterman sums that

SIn(ψM , ψN , c) =

{
1 c = In

0 otherwise
.

Hence the main term reduces to

M = bMN

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

JIn(y, ψM , ψN , In)p(N∗y)
dyk

y
k(n−k)+1
k

= bMN

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

(ˆ
UIn (R)

p(M∗u2y)ψM (u2y)ψN (u2)d∗u2

ˆ
Un(Z)\Un(R)

ψM (u1)ψN (u1)d∗u1

)
p(N∗y)

dyk

y
k(n−k)+1
k

.

Now, note that ˆ
Un(Z)\Un(R)

ψM (u1)ψN (u1)d∗u1 = δM=N ,

and UIn(R) is the trivial group. Hence,

M = δM=NbMN

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

p(M∗y)p(N∗y)
dyk

y
k(n−k)+1
k

= δM=N

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

|p(y)|2d∗y,

and by Plancherel, this is equal to

M = δM=N

ˆ ∞
0

. . .

ˆ ∞
0

|P ](y)|2d∗y.

The proof of the Plancherel formula is the same for GL(n) as for GL(2).
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23.3 Choice of Test Function P ]

Recall that P ] is a function from Langlands parameters to C. We want to choose P ] to be a polynomial

multiplied by a Gaussian e
α2

1+···+α2
n

T .

Remark 23.1. Assuming that all the Maass forms are tempered; i.e. the αi are pure imaginary, this sum of
squares is effectively αj = irj. It’s conjectured that this is true – it’s proved for SL(2,Z). For applications,
its sufficient to show that the contribution of non-tempered Maass forms is small.

Our polynomial FR(α), dependent on a fixed even integer R, will be

FR(α) =

n−2∏
j=1

∏
K,L⊆{1,2,...,n}
|K|=|L|=j

(
1 +

∑
k∈K

αk −
∑
`∈L

α`

)R/2
.

Remark 23.2. You can show this for other polynomials, but this polynomial gives better error terms.

Now, we choose

P ]R,T (α) = e
α2

1+···+α2
n

2T2 FR

(α
2

) ∏
1≤j 6=k≤n

Γ

(
1 + 2R+ αj − αk

2

)
.

One can show that
|FR(α)| � TR·D(n)+ε

for α2
1 + · · ·+ α2

n � T , where

D(n) =
1

2

(
2n

n

)
− n(n− 1)

2
− 2n−1

is related to the degree of the polynomial. Combining with Stirling’s formula on the Γ functions will give
the main term:

Theorem 23.3 (Main term of KTF).

M = δM=N

n−1∑
i=1

ciT
R(2D(n)+n(n−1))+n−i +O(TR(2D(n)+n(n−1)))

With this choice, we can show:

Theorem 23.4. Let λj(M) be the M th Hecke eigenvalue of φj. Then

∞∑
j=1

λj(M)λj(N)
|P ]T,R(α)|2∏

1≤j 6=k≤n Γ
(

1+αj−αk
2

) = M +O((MN)
n2+13

4 TR(2n
n )−2n−ε).

This was proven unconditionally for n = 2, 3, 4, 5.
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24 Lecture 24 - 4/24/25

I am very busy, so these notes will be unedited and contain more mistakes than usual. I hope to get them
edited by the end of May.
I am also not here for the last two lectures – so the notes for those will be from someone else.

24.1 Rankin-Selberg Convolutions

There are three cases to consider:

• GL(n) × GL(n): Done in 1940 for GL(2) × GL(2) by Rankin and Selberg. Done for general n by
Jacquet and Piatetski-Shapiro. This case involves Eisenstein series.

• GL(n)×GL(n+ 1): The easiest case.

• GL(n)×GL(m), with n < m− 1: Also done by Jacquet for Piatetski-Shapiro for special cases. Done
in general by Cogdell and Piatetski-Shapiro (done adelically).

The GL(n)×GL(n) case involves Eisenstein series. If one integrates

ˆ
SL(n,Z)\hn

φ(g)η(g)EBn(g, s)d∗g

by unraveling EBn and expanding the Fourier expansion for η and unravel the U(n− 1,Z)\SL(n− 1,Z) sum
in the Fourier expansion for η, one gets that

L(s, φ× η) = ζ(ns)

∞∑
m1=1

· · ·
∞∑

mn=1

A(M)B(M)

(mn−1
1 mn−2

2 . . .mn−1)s
,

where M = (m1, . . . ,mn−1). Using the functional equation/analytic continutation for the Eisenstein series,
you can show the same for L. (We did this previously.)

24.2 Rankin-Selberg for GL(n)×GL(n+ 1)

Let φ be a Maass form for SL(n,Z), and let η be a Maass form for SL(n+ 1,Z). Let M and M∗ be defined

as previously, and let bM =
∏n−1
k=1 m

k(n−k)
2

k . Then recall that we have the Fourier expansion

φ(g) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 6=0

A(M)

bM
W sign(mn−1)
αφ

(
M∗

(
γ

1

)
g

)

and similarly

φ

((
g

1

))
=

∑
γ∈Un(Z)\SL(n,Z)

∞∑
m1=1

· · ·
∞∑

mn−1=1

∑
mn 6=0

B(M)

bM
W sign(mn)
αη

(
M∗

(
γ

1

)(
g

1

))
.

Here’s we’ll unravel the sum in the Fourier expansion for η – there is no Eisenstein series here! In particular,
we compute〈
φ, η det(∗)s−1/2

〉
=

ˆ
SL(n,Z)\hn

φ(g)η

((
g

1

))
det(g)

s−1/2
d∗g

=
∑

γ∈Un(Z)\SL(n,Z)

∑
M

B(m1, . . . ,mn)∏n
k=1m

k(n−k)
2

k

ˆ
SL(n,Z)\hn

φ(g)W sign(mn)
αη

(
M∗

(
γ

1

)(
g

1

))
det(g)

s−1/2
d∗g
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Making the change of variable g → γ−1g gives〈
φ, η det(∗)s−1/2

〉
=
∑
M

B(m1, . . . ,mn)∏n
k=1m

k(n−k)
2

k

∑
γ∈Un(Z)\SL(n,Z)

ˆ
γ−1(SL(n,Z)\hn)

φ(g)W sign(mn)
αη

(
M∗

(
g

1

))
det(g)

s−1/2
d∗g

=

ˆ
Un(Z)\hn

∑
M

B(m1, . . . ,mn)∏n
k=1m

k(n−k)
2

k

φ(g)W sign(mn)
αη

(
M∗

(
g

1

))
det(g)

s−1/2
d∗g

=
∑
M

ˆ
Un(Z)\Un(R)

B(m1, . . . ,mn)∏n
k=1m

k(n−k)
2

k

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

φ(xy)W sign(mn)
αη

(
M∗

(
xy

1

))
det(y)

s−1/2
d∗yd∗x.

We make the transformation y1 → y1/m1. Note that the integral over x picks off the (m2, . . . ,mn−1)th
Fourier coefficient of φ. We can then unravel the Fourier decomposition of φ. Finally, we continue to make
the transformations yi → yi/mi+1. In the end, we get

∞∑
m1=1

· · ·
∞∑

mn−1=1

∑
mn 6=0

B(m1, . . . ,mn)

bM

ˆ
Un(Z)\hn

φ(g)W sign(mn)
αη




m2 . . . |mn|y1 . . . yn−1

m2 . . .mn−1y1 . . . yn−2

. . .

m2y1

1



 e−2πi(m2x1,2+···+mnxn−1,n)m
−n(s−1/2)
1 det(y)

s−1/2
d∗yd∗x

=

∞∑
m1=1

· · ·
∞∑

mn−1=1

∑
mn 6=0

A(m2, . . . ,mn)B(m1, . . . ,mn)

(mn
1m

n−1
2 . . . |mn|)s

ˆ ∞
y1=0

. . .

ˆ ∞
yn−1=0

Wαφ(y)Wαη

(
y

1

)
(det y)s−1/2

n−1∏
k=1

y
−k(n−k)
k dyk /yk.

This is some sort of generalized Mellin transform; note that L(s, φ× η) is the left term in the product.
Since there is no Eisenstein series, we need to prove the functional equation in a direct way. Define

Λ(s, φ× η) :=
〈
φη,det(∗)s−1/2

〉
.

Theorem 24.1. We have the functional equation

Λ(s, φ× η) = Λ(1− s, φ̃× η̃),

where here φ̃ = φ(wn(g−1)Twn) is the dual Maass form (associated to the contragradient representation),
with wn the long Weyl element (all 1s on the antidiagonal).

Proof. Let gι = wn(g−1)Twn. Then note that gι has Iwasawa decomposition

gι =


1 (−1)bn/2c+1

1 −x2

. . .
. . .

1 −xn−1

1




y1 . . . yn−1

y2 . . . yn−1

. . .

yn−1

1

 .

Then

Λ(s, φ× η) =
〈
φη,det(∗)s−1/2

〉
=

ˆ
SL(n,Z)\hn

φ(g)η

((
g

1

))
(det g)s−1/2d∗g

=

ˆ
SL(n,Z)\hn

φ(gι)η

((
gι

1

))
(det g)s−1/2d∗g.

Note that d∗g is invariant under g → gι, and det(gι)
s−1/2

= det(g)
1/2−s

. Using this gives

Λ(1− s, φ̃× η̃),

as desired.

Remark 24.2. One can generalize these techniques to unitary groups (no Eisenstein series) - this is called
the doubling method.
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24.3 Rankin-Selberg for GL(n)×GL(n′)

This is the most difficult case – we’ll start it today. Here n < n′ − 1; i.e. n ≤ n′. We’ll need the projection
operator – first discovered by Jacquet and Piatestski-Shapiro.

Definition 24.3 (Projection Operator). Fix 2 ≤ n < n′ − 1. The projection operator Pn
′

n sending
Maass forms of SL(n′,Z), projecting/mapping them to automorphic forms on the mirabolic subgroup Pn,1 ⊆
GL(n+ 1,R).
Let g ∈ Pn,1(R). We define

Pn
′

n φ(g) := |det(g)|−
n′−n−1

2

ˆ 1

0

. . .

ˆ 1

0

φ



u1,n+2 . . . u1,n′

g
...

...

un+1,n+2 . . .
...

1
. . .

. . . un′−1,n′

1


e−2πi(un+1,n+2+···+un′−1,n′ )

∏
n+2≤j≤n′

1≤i<j

dui,j .

Example 24.4. Let n = 2 and n′ = 4. Consider P2,1 ⊆ GL(3,R), let φ be a Maass form for SL(4,Z), and

let g =

a b 0
c d 0
0 0 1

 ⊆ P2,1(R). Then

P 4
2 (φ(g)) =

ˆ 1

0

ˆ 1

0

ˆ 1

0

φ


a b 0 u1,4

c d 0 u2,4

0 0 1 u3,4

0 0 0 1

 e−2πiu3,4 du1,4 du2,4 du3,4 .

One can evaluate this by expanding the Fourier expansion for φ. Then

P 4
2 φ(g) =

∑
γ∈U2(Z)\SL(2,Z)

∞∑
m2=1

∑
m3 6=0

Aφ(1,m2,m3)

m2
2m3

W sign(m3)
αφ

(
M∗

(
γ

1

)(
g

1

))
.

Next time, we’ll go through more examples, and then work through GL(n)×GL(n) using this method.
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