Putnam - Polynomials - 10-21

Zachary Klein

October 2025

1 Things to know

- 1. Division Algorithm. p(x) = g(x)q(x) + r(x), where $\deg(r(x)) < \deg(q(x))$
- 2. Vietas Formulas. $s_k = (-1)^k \frac{a_{n-k}}{a_n}$, where $s_k = \sum_{\{i_1, i_2, \dots i_k\} \subseteq [n]} x_{i_1} x_{i_2} \dots x_{i_k}$, and x_i is the ith root of the polynomial and a_i is the coefficient of the x^i term.

2 Easier Problems

1. Consider all lines which meet the graph of

$$y = 2x^4 + 7x^3 + 3x - 5$$

in four distinct points, say (x_i, y_i) , i = 1, 2, 3, 4. Show that

$$\frac{x_1 + x_2 + x_3 + x_4}{4}$$

is independent of the line and find its value. [1977 Putnam A1]

- 2. What is the remainder when $X^{1982}+1$ is divided by X-1? Verify your answer. [1982 VTRMC #1]
- 3. Determine all polynomials P(x) such that $P(x^2 + 1) = (P(x))^2 + 1$ and P(0) = 0. [1971 Putnam A2]
- 4. The product of two of the four roots of the quartic equation $x^4 18x^3 + kx^2 + 200x 1984 = 0$ is -32. Determine the value of k. [1984 USAMO #1]

3 Medium Problems

1. Let a, b, c, d be real numbers such that $b - d \ge 5$ and all zeros x_1, x_2, x_3 , and x_4 of the polynomial $P(x) = x^4 + ax^3 + bx^2 + cx + d$ are real. Find the smallest value the product $(x_1^2 + 1)(x_2^2 + 1)(x_3^2 + 1)(x_4^2 + 1)$ can take. [2014 USAMO #1]

- 2. Let a, b, and c denote three distinct integers, and let P denote a polynomial having all integral coefficients. Show that it is impossible that P(a) = b, P(b) = c, and P(c) = a. [1974 USAMO #1]
- 3. If P(x) denotes a polynomial of degree n such that P(k) = k/(k+1) for k = 0, 1, 2, ..., n, determine P(n+1). [1975 USAMO #3]
- 4. Let n be an even positive integer. Let p be a monic, real polynomial of degree 2n; that is to say, $p(x) = x^{2n} + a_{2n-1}x^{2n-1} + \cdots + a_1x + a_0$ for some real coefficients a_0, \ldots, a_{2n-1} . Suppose that $p(1/k) = k^2$ for all integers k such that $1 \le |k| \le n$. Find all other real numbers x for which $p(1/x) = x^2$. [2023 Putnam A2]

4 Hard Problems

1. For which real polynomials p is there a real polynomial q such that

$$p(p(x)) - x = (p(x) - x)^2 q(x)$$

for all real x? [2024 Putnam A2]

- 2. Find all polynomials whose coefficients are equal either to 1 or -1 and whose zeros are all real. [Putnam and Beyond # 159] (Indian Olympiad Training Program 2005)
- 3. Find all pairs of polynomials p(x) and q(x) with real coefficients for which

$$p(x)q(x+1) - p(x+1)q(x) = 1.$$

[2010 Putnam B4]