## Columbia Putnam Seminar

10/7/25

## 1 Crash Course in Modular Arithmetic

- $a \equiv b \pmod{m}$  means  $m \mid a b$
- You can add, subtract, and multiply numbers modulo m, but not divide.
- If gcd(a, m) = 1, then  $a^{-1}$  is an integer mod m such that  $a^{-1}a \equiv 1 \pmod{m}$ . Can be computed via the Euclidean Algorithm.
- Chinese Remainder Theorem: For pairwise coprime  $m_i$ , the system of congruences  $x \equiv a_i \pmod{m_i}$  is equivalent to a singular congruence  $x \equiv A \pmod{M}$ , where  $M = \prod_{i=1}^{n} m_i$  and  $A = \sum_{i=1}^{n} (M/m_i)(M/m_i)^{-1}a_i$ , where the inverse for each i is taken mod  $m_i$ . Can also be interpreted in that any equation mod m is equivalent to solving it modulo the prime factors.
- Fermat's Little Theorem: If p prime and  $p \nmid a$ ,  $a^{p-1} \equiv 1 \pmod{p}$ .
- Euler's Totient Function:  $\phi(n)$  is the number of positive integers less than n relatively prime to n. If  $n = \prod_{i=1}^k p_i^{e_i}$  is the prime factorization of n, then  $\varphi(n) = n \prod_{i=1}^k \left(1 \frac{1}{p_i}\right)$ .
- Euler's Theorem: If gcd(a, m) = 1,  $a^{\varphi(m)} \equiv 1 \pmod{m}$ .
- Order of  $a \mod m$ : smallest positive integer k such that  $a^k \equiv 1$ . If  $a^n \equiv 1 \pmod m$ , the order must divide n.
- Wilson's Theorem:  $(p-1)! \equiv -1 \pmod{p}$ .
- Primitive root: g such that  $g^{\phi(m)} \equiv 1 \pmod{m}$ . This exists iff m = 1, 2, 4, or of the form  $p^k$  and  $2p^k$  for odd prime p.

## 2 Problems

- 1. For positive integers a, m, and n, show that that  $a^m 1$  divides  $a^n 1$  iff  $m \mid n$ .
- 2. Prove there are infinitely many primes equivalent to 3 (mod 4).
- 3. (2007 B1) Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then f(n) divides f(f(n) + 1) if and only if n = 1.
- 4. Find the sum of all positive integers n less than 2030 such that  $n^3 + 2n^2 + 2n + 1$  is divisible by 2029.
- 5. Prove that for any positive integer k, there exist k consecutive positive integers such that none of them are prime powers.
- 6. (2017 B2) Suppose that a positive integer N can be expressed as the sum of k consecutive positive integers

$$N = a + (a+1) + (a+2) + \dots + (a+k-1)$$

for k = 2017 but for no other values of k > 1. Considering all positive integers N with this property, what is the smallest positive integer a that occurs in any of these expressions?

7. Find all integer solutions (a, b, c) for the equation  $a^3 + 2b^3 = 7c^3$ .

- 8. (2006 A2) Alice and Bob play a game in which they take turns removing stones from a heap that initially has n stones. The number of stones removed at each turn must be one less than a prime number. The winner is the player who takes the last stone. Alice plays first. Prove that there are infinitely many n such that Bob has a winning strategy. (For example, if n = 17, then Alice might take 6 leaving 11; then Bob might take 1 leaving 10; then Alice can take the remaining stones to win.)
- 9. (2001 A5) Prove that there are unique positive integers a, n such that  $a^{n+1} (a+1)^n = 2001$ .
- 10. (2022 A3) Let p be a prime number greater than 5. Let f(p) denote the number of infinite sequences  $a_1, a_2, a_3, \ldots$  such that  $a_n \in \{1, 2, \ldots, p-1\}$  and  $a_n a_{n+2} \equiv 1 + a_{n+1} \pmod{p}$  for all  $n \geq 1$ . Prove that f(p) is congruent to 0 or 2 (mod 5).
- 11. (2021 A5) Let A be the set of all integers n such that  $1 \le n \le 2021$  and gcd(n, 2021) = 1. For every nonnegative integer j, let  $S(j) = \sum_{n \in A} n^j$ . Determine all values of j such that S(j) is a multiple of 2021.
- 12. (2024 A4) Find all primes p > 5 for which there exists an integer a and an integer r satisfying  $1 \le r \le p-1$  with the following property: the sequence  $1, a, a^2, \ldots, a^{p-5}$  can be rearranged to form a sequence  $b_0, b_1, b_2, \ldots, b_{p-5}$  such that  $b_n b_{n-1} r$  is divisible by p for  $1 \le n \le p-5$ .
- 13. Prove that for each positive integer n, there are pairwise relatively prime integers  $k_0, k_1, \ldots, k_n$ , all strictly greater than 1, such that  $k_0k_1 \cdots k_n 1$  is the product of two consecutive integers.