Riemann-Lebesgue lemma:

$$\lim_{n \to \infty} \int_a^b f(x) \sin(nx) dx = 0.$$

Co-area formula:

$$\int_{\mathbb{R}^n} f dx = \int_0^\infty \int_{\partial B_r} f \, d\sigma dr.$$

If

$$|f(x)| \le C(1+|x|)^{-\gamma}$$

then f is integrable if  $\gamma > n$ .

## Calculus problems

1. Find the values of  $\gamma$  such that the double sum converges

$$\sum_{m,n\geq 1} \frac{1}{(m+\sqrt{n})^{\gamma}} < \infty.$$

2. Show that the limit exists

$$\lim_{a \to \infty} \int_0^a \sin x \, \sin x^2 \, dx.$$

**3.** Let f be a twice-differentiable real-valued function satisfying

$$f(x) + f''(x) = -xg(x)f'(x),$$

where  $g(x) \ge 0$  for all real x. Prove that |f(x)| is bounded.

**4.** Let  $f(t) = \sum_{j=1}^{N} a_j \sin(2\pi j t)$ , where each  $a_j$  is real and  $a_N$  is not equal to 0. Let  $N_k$  denote the number of zeroes (including multiplicities) of  $\frac{d^k f}{dt^k}$ . Prove that

$$N_0 \le N_1 \le N_2 \le \cdots$$
 and  $\lim_{k \to \infty} N_k = 2N$ .

**5.** Let f be a continuous real-valued function on  $\mathbb{R}^3$ . Suppose that for every sphere S of radius 1, the integral of f(x, y, z) over the surface of S equals 0. Must f(x, y, z) be identically 0?

**6.** Let  $a_i, b_i \neq 0$  such that

$$\sum_{i=1}^{n} a_i |\sin(b_i x + i)| \ge 0.$$

Show that  $\sum a_i \geq 0$ .

7. Let F = (u, v) be a function from  $\mathbb{R}^2$  to  $\mathbb{R}^2$  with continuous partial derivatives  $u_x, u_y, v_x, v_y$  that are positive everywhere. Suppose that

$$u_x v_y - \frac{1}{4} (u_y + v_x)^2 > 0.$$

Prove that F is one-to-one.

**8.** Let

$$I(R) = \iint_{x^2 + y^2 < R^2} \left( \frac{1 + 2x^2}{1 + x^4 + 6x^2y^2 + y^4} - \frac{1 + y^2}{2 + x^4 + y^4} \right) dx dy.$$

Find

$$\lim_{R \to \infty} I(R),$$

or show that this limit does not exist.

**9.** Let  $y_1,...,y_n, z_1,...,z_n$  be points in the plane with different centers of mass

$$\frac{1}{n}\sum y_k \neq \frac{1}{n}\sum z_k.$$

Show that there are infinitely many x's such that

$$\sum |x - y_k| = \sum |x - z_k|.$$

10. Let f > 0 be continuous on [0,1], and let  $x_1 < x_2 < ... < x_n = 1$  be such that

$$\int_0^{x_1} f(x)dx = \int_{x_1}^{x_2} f(x)dx = \dots = \int_{x_{n-1}}^{x_n} f(x)dx.$$

Compute

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n}.$$

**11.** Let  $f: \mathbb{R} \to \mathbb{R}$  be an infinitely differentiable function satisfying f(0) = 0, f(1) = 1, and  $f(x) \ge 0$  for all  $x \in \mathbb{R}$ . Show that there exist a positive integer n and a real number x such that  $f^{(n)}(x) < 0$ .