
Hurst index estimation under measurement errors

Introduction

What is the difference between the following two processes?

Clearly, the second process is rougher (i.e., less regular) than the first process. In this project,
we want to study a class of processes XH

t called fractional Brownian motions (fBM). If you are
familiar with Brownian motion (BM), fBMs are generalizations of BM indexed by a parameter
H ∈ (0, 1) called the Hurst index: if H = 1

2 , fBM is simply BM; if H ∈ (1
2 , 1), fBM is smoother

than BM; and if H ∈ (0, 1
2), fBM is rougher than BM. For example, in the simulation above, the

first process is a BM, while the second is an fBM with H = 0.3. It is known that, with probability
1, the paths of fBM with Hurst index H are Hölder continuous of order α if and only if α > H.
Hence, H can be interpreted as a parameter of regularity (roughness/smoothness).

Estimating H as a parameter of regularity is often important in applications. Suppose that we
can observe an fBM XH on a fine grid In = { i

n : i = 1, . . . , n} of [0, 1], where n is large. Can we
figure out H from these observations? Put in proper statistical language, this question becomes:
Can we consistently estimate H based on the data, that is, can we construct an estimator Ĥn from
the data {XH

i/n : i = 1, . . . , n} such that Ĥn converges in probability to H as n → ∞? And if so,
can we determine the rate (i.e., the speed of convergence) of Ĥn? The answer is “yes” to both
questions, and the idea behind is simple: by the properties of fBM, the variance of an increment
∆n

i X
H := XH

i/n −X
H
(i−1)/n is E[(∆n

i X
H)2] = Cn2H for some constant C. From this, one can show

that
V n(XH) := 1

n

n∑
i=1

(∆n
i X

H)2 ∼ Cn2H ,

in the sense that n−2HV n(XH) P−→ C. The functional V n(XH) is called the (normalized) quadratic
variation of XH and the fact that H appears in the scaling of this quantity allows us to construct
a consistent estimator for H. It can further be shown that this estimator has a rate of n−1/2,
which is best possible.

But in practice, often one cannot observe XH
i/n directly: the instruments used to measure XH

i/n
incur measurement errors εni , so that, in fact, one can only observe

Y H
i
n

= XH
i
n

+ εni ,

where (εni )i=1,...,n is a sequence of iid normal random variables with mean 0 and variance v. If such
a noise with v = 0.1 is added to the paths simulated above, what we get is this:
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Suddenly, it is much less obvious, maybe even unclear, which one is BM plus noise and which
one is fBM plus noise. Using some modifications of V n(XH), one can prove that H can still be
consistently estimated, but the optimal rate now goes down to n−1/(4H+2).

Project description

Apart from measurement noise, there is another phenomenon that complicates matters: in many
situations encountered in practice, the stochastic fluctuations (i.e., the local variance of the incre-
ments) of XH

t are not constant over time but time-varying and random. In particular, the resulting
processes are no longer Gaussian. Depending on the field of applications, people refer to this as
stochastic volatility or intermittency.

In the world of statistics, this means that we have to move from a parametric setting and to a
non-parametric / semi-parametric setting. Fortunately, the quadratic variation based estimators
of H still do their job: they continue to be consistent with rate n−1/2, but the proof of this fact
becomes much more involved. This is well known in the literature. What is open—and to fill this
gap is precisely the goal of this project—is how to estimate H when both stochastic volatility /
intermittency and measurement errors are present, which is by far the most realistic scenario in
practice. We will mostly study this estimation problem from a theoretical perspective. Given time
and interest, applications to data may be considered.

To be more precise, the goals of this project will be to:

1. Learn some basic results about BM and fBM. Here you will encounter some classic concepts
in probability such as convergence, martingales and stochastic integration.

2. Study existing results about V n(XH) and understand existing estimators for H when (a)
measurement noise is present or (b) stochastic volatility / intermittency is present.

3. Find and analyze estimators for H when both measurement noise and stochastic volatility /
intermittency are present. This is the main research problem of the project.

4. (Optional:) Apply the results to turbulence data.

Prerequisites

You must be well trained in analysis and have had at least one probability theory class—MATH
GU4155 or equivalent. I assume that you are familiar with things like Taylor’s theorem, law of
large numbers, central limit theorems and convergence in probability / in distribution. If you
already know what Brownian motion or stochastic integrals are, even better. Given that this
project is quite ambitious, you need to have a strong affinity for proofs and be willing to learn
fast. In exchange, you have the opportunity to delve into an interesting area of applied probability
/ mathematical statistics that bridges theory and applications. I am happy to provide reading
material if you feel the need to catch up before the official start.
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