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(ForwarD) SDE

The equation:
Xo=x, dX;= [,L(Xt) dt+U(Xt) dB;, t € [0, T]
Causality principle(s):

Xt = F(t,{Bs}seo,) (strong)
{Xs}se[o,t] 1L {Bs — Bt}se[t,T] (weak)

Solution by simulation (Euler scheme):
1) Xo=x, 2)Xpnr =X+ pu(Xy) At + o(Xy) AC,

where we draw A = Byyar — By from N(0, vV At).
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BSDE ARE NOT BACKWARD SDE
The equation:

adX; = p(Xy)dt + o(Xs)dBy, t € [0, T], Xr =¢&.
Backwards solution by simulation:

1) Xr =¢, 2) Xi-at = Xe—p(Xi—at) At—0(Xi-at)(Be—Bi—at)
The solution is no longer defined, or, at best, no longer adapted:
eg,if dX;=dB;, Xr=0 then X;=B;—Br.

Fix: to restore adaptivity, make Z; = o(X;) a part of the solution
dX; = w(Xy)dt + ZydBy, X1 =¢&.

MRT: for p1 = 0 we get the martingale representation problem:

dX; = Z;dB;, Xr =¢.
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Backwarp SDE

A change of notation:
aYy = —f (Y4, Z)dt + ZydBy, t € [0, T1, Yr =¢.
A solution is a pair (Y, Z). The function f is called the driver.
Time- and uncertainty-dependence is often added:
dYy = —f(t,w, Yy, Z)dt + ZydBy, t € [0, T1, Y1 = ¢{(w),
and the w-dependence factored through a (forward) diffusion

Xo==x, dX; = u(t, Xt) dt + O'(i’, Xt) dB;
dYt = —f(t, Xt, Yt,Zt) dt + Z,{ dBt, YT = g(Xt)
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EXISTING THEORY - DIMENSION 1

Linear: Bismut 73, (or even WeNTZzEL, KUNITA-WATANABE Or ITO)
Lipschitz: PArboux-PenG 90

Linear-growth: LEPELTIER-SAN MARTIN 97

With reflection: EL Karoui et al '95, CvitaNni¢-KArRATZAS 796
Constrained: BuckpauN-Hu 98, CvitaNi¢-KARATZAS-SONER 98
Quadratic: KosyrLanski ‘00

Superquadratic: DELBaEN-Hu-Bao “11 - mostly negative
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EXISTING THEORY - SYSTEMS

Lipschitz drivers: Parpoux-PenG "90

Smallness: TEvzapze ‘08

Quadratic global existence: PEnG '99 - open problem
Non-existence: Frer - pos Rexs "11

Quadratic global existence - special cases:

Tan 03, JamMNesHAN-KuPPER-LuO 14,
Cueripito-Nam 15, Hu-Tanc 15
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A PDE coNNECTION
A single equation: under regularity conditions, the pair (Y, Z)
is a Markovian solution, i.e., Y = v(t, B;), to
aYy = —f(Ye, Zy)dt + Z;dBy, Y7 = g(Br)
if and only if v is a viscosity solution to
v+ 3Av+f(0,Dv) =0, o(T,-) =g.

Systems: no such characterization (“if” direction when the PDE
system admits a smooth solution).

no maximum principle — no notion of a viscosity solution.
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THE APPROACH OF KOBYLANSKI

Approximation: approximate both the driver f and the terminal
condition g by Lipschitz functions; ensure monotonicity.

Monotone convergence: use the comparison (maximum) prin-
ciple to get monotonicity of solutions

BMO-bounds: use the quadratic growth of f to get uniform bounds
on the approximations to Z; exponential transforms

Hf* = exp(aY}) is a submartingale for large enough «,
since

dHE = aHPZ; dBy + aHP (%aZf —f(Ys, zt)) dt

Unfortunately: this will not work for systems for two reasons:
1. There is no comparison principle for systems
2. The exponential transform no longer works.
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OuR SeTUP

The driving diffusion: let X be a uniformly-elliptic inhomoge-
neous diffusion on RY with (globally) Lipschitz and bounded co-
efficients.

Markovian solutions: a pair v : [0,T] x RY — RN, w : [0, T] x
RN*? of Borel functions such that Y := v(-,X) is a continuous
semimartingale, and

T T
g(XT) =Y _/ f(57XSa YSqu) ds "‘/ Z dB;,
t t
where Z := w(-, X).

Variants: bounded or (locally) Hélderian solutions (when v has that
property) or a bmo-solution (when w(t, X;) is in bmo).
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A SUBSTITUTE FOR THE EXPONENTIAL TRANSFORM
Set (z, z)q(t,x) = za(t, x)z', where a = oo’ (double the coefficient
matrix for the second-order part of the generator of X):
Definition: Given a constant ¢ > 0, a function h € C?(RN) is

called a c-Lyapunuov function for f if h(0) = 0,Dh(0) = 0, and
there exists a constant k such that

3D%(Y) : (2 2oy — DhYIF (2 y,2) > |2~k ()
for all (t,x,y,z) € [0,T] x RY x RN x RN*4 with |y| < c.
Intuitively: h(Y;)+kt mustbe a ‘very strict’ submartingale, when-

ever Y is a solution. As mentioned before, for N =1, h(y) = e,
for large-enough a.

10/18



THE MAIN RESULT

Theorem. Let X be a uniformly elliptic diffusion with bounded, Lip-
schitz coefficients, and f be a continuous driver of (at-most) quadratic
growth in z. Suppose that there exits a constant ¢ > 0 such that

» g isbounded and in C%,
» f admits a c-Lyapunov function, and
» Y is “a-priori bounded” by c.

Then the BSDE system

dY, = —f(t,X;,Y;, Z;) dt + Z; dB;, Yr = g(Br),

has a Holderian solution (v, w), with [ ZdB a BMO-martingale
and w = Du, in the distributional sense on (0, T) x R%.

This solution is, moreover, unique in the class of all Markovian
solutions if f is y-independent and

f(t,x,22) = f(t, x,21)| < C(|z1] + |22]) |22 — z1] -
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A PEEK INTO THE PROOF

(to,xo+2R) .- -=—""""7-

(to — 6R?, z)

S eea Dof* < C [forue |Dol? + R

We use the “hole filling” method (WipmaN "76) and its variants
(StrUwE "81, BENsoussaN-Frensk, '02) - and apply it to get Cam-
panato (and therefore Holder) a-priori estimates.
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TaEe BensoussaN-Frense (BF) conpiTion

Proposition. If f admits a decomposition
f(t,x,y,z) = diag(zl(t,x,y,2))+aq(t,x,y,z)+s(t,x,y, z) +k(t, x),
with
II(t,x,y,z)| < C(1+|z]), (quadratic-linear)
‘qi(t, X, Y, z)‘ < C(l + Z;:l ‘sz ), (quadratic-triangular)
Is(t,x,y,z)| < k(|z]), Zli)rgo % =0, (subquadratic)
k € L>=(]0, T] x RY), (z-independent),

Then a c-Lyapunov function exists for each ¢ > 0.

Extensions: an approximate decomposition will do, as well. To
the best of our knowledge, all systems solved in the literature
satisfy the (BF) condition (in z-dependence).
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StocHAsTIC EQUILIBRIA IN INCOMPLETE M ARKETS

Setup: {F;}ico,1] generated by two independent BMs B and W
Price: dS} = A dt + o, dB; + (WLOG oy = 11)
Agents: U'(x) = —exp(—x/d"), EE € LY Fr),i=1,...,1
Demand: 7 := argmax_ . 4 E [LIi < fOT 7, dS) + Ei)}.

Goal: Is there an equilibrium market price of risk A, i.e., does
there exist a process A such that the clearing conditions
S =0

hold?
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StocHAsTIC EQUILIBRIA IN INCOMPLETE M ARKETS
A characterization: Karparas, XinG and Z, ’15, give the follow-
ing characterization: a process A € bmo is an equilibrium market
price of risk if and only if it admits a representation of the form

N
Al =3 aut
i=1
for some solution (u, v, Y) € bmo x bmo x S* of
AY} = phdBy + vidW + (34 = Sl + Alulif) dt,
Y =G, i=1,...,1,
where o/ = 6i/(2j §), G =E/§'.

Theorem (XinG, Z.) If there exists a regular enough function g
and a diffusion X such that G' = gi(XT), for all i, then a stochastic
equilibrium exists and is unique in the class of Markovian solu-

tions.
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MARTINGALES ON M ANIFOLDS

I'-martingales: Let M be an N-dimensional differentiable man-
ifold endowed with an affine connection I'. A continuous semi-
martingale Y on M is called a I'-martingale if

t
f(¥) =3 / Hessf(dY;,dYs), t € [0, T],
0
is a local martingale for each smooth f : M — R, where

(Hessf);(y) = Dyf (y) — X1 U (y) Dif ()-

A coordinate representation: By Itd’s formula, Y is a I-martingale
if and only if its coordinate representation has the following form
dYk = —f*(v,, z,) dt + ZF aw,
d . .
where f*(y,z) = 1 Y4, Th(y)(z)) 2.
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MARTINGALES ON M ANIFOLDS

A Problem: Given an N-dimensional Brownian motion B and
an M-valued random variable {, construct a I'-martingale ¥ with

Yr = ¢

Solution: Easy in the Euclidean case - we filter Y; = E[¢|F]. In
general, solution may not exist. Under various conditions, such
processes were constructed by DarLinG “95 and Brache '05, '06.

Our contribution: Taken together, the existence of a Lyapunov
function and a-priori boundedness are (essentially) equivalent to
the existence of a so-called doubly-convex function / on a neigh-
borhood of a support of &.

Conversely, this sheds new light on the meaning of c-Lyapunov
functions: loosely speaking - they play the role of convex func-
tions, but in the geometry dictated by f.
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Sretan rodendan, Yannis!
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